The finishing operation of the electrochemical finishing technology (ECF) for tube of steel was investigated In this study. Experimental procedures included qualitative
and quantitative analyses for surface roughness and material removal. Qualitative analyses utilized finishing optimization of a specific specimen in various design and operating conditions; value of gap from 0.2 to 10mm, flow rate of electrolytes from 5 to 15liter/min, finishing time from 1 to 4min and the applied voltage from 6 to 12v, to find out the value of surface roughness and material removal at each electrochemical state. From the measured material removal for each process state was used to verify the relationship with finishing time of work piece. Electrochemical finishing proves an effective method to reduce the surface roughness (Ra) from 1.6μm to 0.1μm in 4 min. Finally, the observed relationships were used to predicate the diameter of blank, tool diameter and flow rate by neural network modeling ANN which has inputs defined by the finished hole diameter, surface roughness, and finishing time. Three of hidden layers and their neurons were found by an integration procedure. The design charts observed from this study utilize the designers in predication of diameter for blank and design of electrode.
Lowering the emission, fuel economy and torque management are the essential
requirements in the recent development in the automobile industry. The main engine control
input that satisfies the above requirements is the throttling angle which adjusts the air mass
flow rate to the engine port. Due to the uncertainty and the presence of the nonlinear
components in its dynamical model, the sliding mode control theory is utilized in this work
for the throttle valve angle control system to design a robust controller for this system in the
presence of a nonlinear spring and Coulomb friction. A continuous sliding mode control law
which consists of a saturation function, instead of a signum function, and the integral of
ano
Dust and bird residue are problems impeding the operation of solar street lighting systems, especially in semi-desert areas, such as Iraq. The system in this paper was designed and developed locally using simple and inexpensive materials. The system runs automatically. It Connects to solar panels used in solar street lighting, and gets the required electricity from the same solar system. Solar panels are washed with dripping water in less than half a minute by this system. The cleaning period can also be controlled. It can also control, sensing the amount of dust the system operates. The impact of different types of falling dust on panels has also been studied. This was collected from different winds and studied their impact o
... Show MoreIn this research the results of applying Artificial Neural Networks with modified activation function to perform the online and offline identification of four Degrees of Freedom (4-DOF) Selective Compliance Assembly Robot Arm (SCARA) manipulator robot will be described. The proposed model of identification strategy consists of a feed-forward neural network with a modified activation function that operates in parallel with the SCARA robot model. Feed-Forward Neural Networks (FFNN) which have been trained online and offline have been used, without requiring any previous knowledge about the system to be identified. The activation function that is used in the hidden layer in FFNN is a modified version of the wavelet function. This approach ha
... Show MoreIn this research the results of applying Artificial Neural Networks with modified activation function to
perform the online and offline identification of four Degrees of Freedom (4-DOF) Selective Compliance
Assembly Robot Arm (SCARA) manipulator robot will be described. The proposed model of
identification strategy consists of a feed-forward neural network with a modified activation function that
operates in parallel with the SCARA robot model. Feed-Forward Neural Networks (FFNN) which have
been trained online and offline have been used, without requiring any previous knowledge about the
system to be identified. The activation function that is used in the hidden layer in FFNN is a modified
version of the wavelet func
A preventing shield for neutrons and gamma rays was designed using alternate layers of water and iron with pre-fixed dimensions in order to study the possibility of attenuating both neutrons and gamma-rays. ANISN CODE was prepared and adapted for the shield calculation using radiation doses calculation: Two groups of cross-section were used for each of neutrons and gamma-rays that rely on the one – dimensional transport equation using discrete ordinate's method, and through transforming cross-section values to values that are independent on the number of groups. The memory size required for the applied code was reduced and the results obtained were in agreement with those of standard acceptable document samples of cross –section, this a
... Show MoreHome Computer and Information Science 2009 Chapter The Stochastic Network Calculus Methodology Deah J. Kadhim, Saba Q. Jobbar, Wei Liu & Wenqing Cheng Chapter 568 Accesses 1 Citations Part of the Studies in Computational Intelligence book series (SCI,volume 208) Abstract The stochastic network calculus is an evolving new methodology for backlog and delay analysis of networks that can account for statistical multiplexing gain. This paper advances the stochastic network calculus by deriving a network service curve, which expresses the service given to a flow by the network as a whole in terms of a probabilistic bound. The presented network service curve permits the calculation of statistical end-to-end delay and backlog bounds for broad
... Show MoreIn this paper, a cognitive system based on a nonlinear neural controller and intelligent algorithm that will guide an autonomous mobile robot during continuous path-tracking and navigate over solid obstacles with avoidance was proposed. The goal of the proposed structure is to plan and track the reference path equation for the autonomous mobile robot in the mining environment to avoid the obstacles and reach to the target position by using intelligent optimization algorithms. Particle Swarm Optimization (PSO) and Artificial Bee Colony (ABC) Algorithms are used to finding the solutions of the mobile robot navigation problems in the mine by searching the optimal paths and finding the reference path equation of the optimal
... Show MoreWhen optimizing the performance of neural network-based chatbots, determining the optimizer is one of the most important aspects. Optimizers primarily control the adjustment of model parameters such as weight and bias to minimize a loss function during training. Adaptive optimizers such as ADAM have become a standard choice and are widely used for their invariant parameter updates' magnitudes concerning gradient scale variations, but often pose generalization problems. Alternatively, Stochastic Gradient Descent (SGD) with Momentum and the extension of ADAM, the ADAMW, offers several advantages. This study aims to compare and examine the effects of these optimizers on the chatbot CST dataset. The effectiveness of each optimizer is evaluat
... Show MoreThe study aimed to evaluate educational programs efficiency in applying the best educational practices to educate students from the dangers of indecent behaviors, in line with higher education policy and the appropriateness of educational program dimensions to spread awareness among students to not fall into the indecent behaviors clutches. The study adopted the inductive exploratory approach through structural equation modeling and the descriptive analysis of the collected data from randomly selected sample (n=385) from educational academics at Northern Border University in the Saudi Arabia using a specially designed survey tool to meet study purposes to evaluate dimensions of teaching methods, evaluation tools, training courses, course
... Show More