A series of overbased magnesium fatty acids such as caprylate, caprate, laurate, myristate, palmitate, stearate and oleate) were synthesized by the reaction of the fatty acids with active – 60 magnesium oxide and carbon dioxide (CO2) gas at 60 oC in the presence of ammonia solution as catalyst, toluene / ethanol solvent mixture (9:1vol/vol) was added.
The prepared detergent additives were characterized by FTIR, 1HNMR and evaluated by blending each additive in various concentrations with medium lubricant oil fraction (60 stock) supplied by Iraqi Midland Refineries Company. The total base number (TBN, mg of KOH/g) was determined, and the results of TBN were treated by using two-way analysis of variance (ANOVA) test. It was found that the number of carbons in the fatty acid (C8-C18) used for overbased detergent preparation had slight effect on the TBN of the oil, while detergent concentrations (1-5% wt/wt) had a significant effect on the TBN of the blended oil.
The oxidation stability of the oil blends with 2% of overbased magnesium palmitate and overbased magnesium stearate detergents was evaluated, and the results showed that these blends gave higher oxidation stability compared with the blends with standard antioxidant supplied by Midland Refineries Company.
SAPO-11 is synthesized from silicoaluminophosphate in the presence of di-n-propylamine as a template. The results show that the sample obtained has good crystallinity, 396m2/g BET surface area, and 0.35 cm3/g pore volume. The hydroisomerization activity of (0.25)Pt (1)Zr (0.5)W/SAPO-11 catalyst was determined using n-decane and base oil. All hydroisomerization experiments of n-decane were achieved at a fixed bed plug flow reactor at a temperature range of 200-275°C and LHSV 0.5-2h-1. The results show that the n-decane conversion increases with increasing temperature and decreasing LHSV, the maximum conversion of 66.7 % was achieved at temperature 275°C and LHSV of 0.5 h-1
... Show MoreSAPO-11 is synthesized from silicoaluminophosphate in the presence of di-n-propylamine as a template. The results show that the sample obtained has good crystallinity, 396m2/g BET surface area, and 0.35 cm3/g pore volume. The hydroisomerization activity of (0.25)Pt (1)Zr (0.5)W/SAPO-11 catalyst was determined using n-decane and base oil. All hydroisomerization experiments of n-decane were achieved at a fixed bed plug flow reactor at a temperature range of 200-275°C and LHSV 0.5-2h-1. The results show that the n-decane conversion increases with increasing temperature and decreasing LHSV, the maximum conversion of 66.7 % was achieved at temperature 275°C and LHSV of 0.5 h-1. Meanwhile, the same catalyst was used to improve base oil spec
... Show MoreThis work represents development and implementation a programmable model for evaluating pumping technique and spectroscopic properties of solid state laser, as well as designing and constructing a suitable software program to simulate this techniques . A study of a new approach for Diode Pumped Solid State Laser systems (DPSSL), to build the optimum path technology and to manufacture a new solid state laser gain medium. From this model the threshold input power, output power optimum transmission, slop efficiency and available power were predicted. different systems configuration of diode pumped solid state laser for side pumping, end pump method using different shape type (rod,slab,disk) three main parameters are (energy transfer efficie
... Show MoreTight oil reservoirs have been a concerned of the oil industry due to their substantial influence on oil production. Due to their poor permeability, numerous problems are encountered while producing from tight reservoirs. Petrophysical and geomechanical rock properties are essential for understanding and assessing the fracability of reservoirs, especially tight reservoirs, to enhance permeability. In this study, Saadi B reservoir in Halfaya Iraqi oil field is considered as the main tight reservoir. Petrophysical and geomechanical properties have been estimated using full-set well logs for a vertical well that penetrates Saadi reservoir and validated with support of diagnostic fracture injection test data employing standard equations
... Show MoreA new application of a combined solvent extraction and two-phase biodegradation processes using two-liquid phase partitioning bioreactor (TLPPB) technique was proposed and developed to enhance the cleanup of high concentration of crude oil from aqueous phase using acclimated mixed culture in an anaerobic environment. Silicone oil was used as the organic extractive phase for being a water-immiscible, biocompatible and non-biodegradable. Acclimation, cell growth of mixed cultures, and biodegradation of crude oil in aqueous samples were experimentally studied at 30±2ºC. Anaerobic biodegradation of crude oil was examined at four different initial concentrations of crude oil including 500, 1000, 2000, and 5000 mg/L. Complete removal of crud
... Show MoreThe demand on energy sources throughout the world have led to an increase in the production processes of crude oil which is considered to be the main source of energy, without considering the impact on the environment. The objective of this study is to evaluate the environmental impact of drilling processes and crude oil spillage on soil in the Rumaila oil field, Basra, Southern Iraq. An investigation was undertaken to determine the content of Polycyclic Aromatic Hydrocarbons (PAHs) and heavy metals in the soil. Ten soil samples were collected near oil wells and analyzed. The results showed a high concentration of PAHsin the soil, particularly (Acenaphthene, Fluorene, Anthracene, Fluoranthene and Pyrene) due to crude oil spillage. The he
... Show MoreThis work represents the preparation of the starting material, 3-chloro-2-oxo-1,4-dithiacyclohexane (S) using a new method. This material was reacted with, 4-phenylthiosemicarbazide to give (H3NS3) as a tetradentate ligand H3L. New complex of rhenium (V) with this ligand of the formula [ReO(L)] was prepared. New complexes of the general formula [M(HL)] of this ligand when reacted with some metal ions where: M = Ni(II), Cu(II), Cd(II), Zn(II), Hg(II) have been reported. The ligand and the complexes were characterized by infrared, ultraviolet–visible, mass, 1H nuclear magnetic resonance and atomic absorption spectroscopic techniques and by (HPLC), elemental analysis, and electrical conductivity. The proposed structure for H3L with Re (V) i
... Show MoreThe reaction of 2-amino benzoic acid with 1,2-dichloroethane under reflux in methanol and KOH as a base to gave the precursor [H4L]. The precursor under reflux and drops of CH3COOH which reacted with (2mole) from salicycaldehyde in methanol to gave a new type N2O4 ligand [H2L], this ligand was reacted with (MCl2) Where [M= Co (II), Ni(II), Cu(II) and Zn(II)] in (1:1) ratio at reflux in methanol using KOH as a base, to give complexes of the general formula [M(L)]. All compounds have been characterized by spectroscopic methods [1H NMR ( just to the ligand), FTIR, uv-vis, atomic absorption], melting point, conductivity, chloride content, as well as m
... Show MoreThe reaction of 2-amino benzoic acid with 1,2-dichloroethane under reflux in methanol and KOH as a base to gave the precursor [H4L]. The precursor under reflux and drops of CH3COOH which reacted with (2mole) from salicycaldehyde in methanol to gave a new type N2O4 ligand [H2L], this ligand was reacted with (MCl2) Where [M= Co (II), Ni(II), Cu(II) and Zn(II)] in (1:1) ratio at reflux in methanol using KOH as a base, to give complexes of the general formula [M(L)]. All compounds have been characterized by spectroscopic methods [1H NMR ( just to the ligand), FTIR, uv-vis, atomic absorption], melting point, conductivity, chloride content, as well as magnetic susceptibility measurements. From the above data, the proposed molecular structu
... Show MoreAddition chloro acetyl isothiocyanate (C3H2ClNOS) with 3-Aminoaceto phenone (C8H9NO) to prepare a fresh Ligand [N-(3-acetyl phenyl carbamothioyl)-2-chloroacetamide](L). The ligand (L) behaves as bidentate coordinating through O and S donor with metal ions, the general formula of all complexes [M(L)2(Cl)2](M+2 = Manganese(II), Cobalt(II), Cadmium(II) and Mercury(II)). Compounds were investigation by Proton-1, Carbon -13 NMR spectra (ligand (L) only), Element Microanalysis for C, N, H, O, S, Fourier-transform infrared, UV visible, Conductance