The aim of this research is to study the factors affecting drag coefficient (C d ) in
non-Newtonian fluids which are the rheological properties ,concentrations of non-
Newtonian fluids, particle shape, size and the density difference between particle and
fluid .Also this study shows drag coefficient (C d ) and particle Reynolds' number (Re
P ) relationship and the effect of rheological properties on this relationship.
An experimental apparatus was designed and built, which consists of Perspex pipe
of length of 160 cm. and inside diameter of 7.8 cm. to calculate the settling velocity,
also electronic circuit was designed to calculate the falling time of particles through
fluid.
Two types of solid particles were used; glass spheres and crushed rocks as
irregularly shaped particles with different diameters and compared with each other.
The concept of equivalent spherical diameter (D S ) was used to calculate the
diameters of irregularly shaped particles.
The flow behavior for Non-Newtonian fluids was represented by Power-Law model.
Two types of polymers were used, Carboxy Methyl Cellulose CMC with
concentrations of (3.71, 5, 15 and 17.5) g/l and polyacrylamide with concentrations of
(2, 4 and 6) g/l.
The results showed that the drag coefficient decreased with increasing settling
velocity and particle diameters and sizes; and increased as fluid become far from
Newtonian behavior and concentrations and the density difference between particle
and fluid.
The results also showed that the rheological properties of Non-Newtonian fluids
have a great effect on the drag coefficient and particle Reynolds number relationship,
especially in laminar-slip regime and decreases or vanishes at transition and turbulentslip
regimes.
New correlations were obtained which relates drag coefficient with concentrations
of polymers and with flow behavior indices for spherical and irregular shaped
particles in Carboxy Methyl Cellulose CMC and polyacrylamide solutions.
The elastic magnetic electron scattering form factors and the magnetic dipole moments have been studied for the ground state of 19C (halo) (JπT= 1/2+ 7/2) nucleus carried out using psd-shell Millener-Kurath (PSDMK) interactions. The single-particle wave functions of harmonic-oscillator (HO) potential are used with two different oscillator parameters bcore and bhalo. According to this interaction, the core nucleons of 18C nucleus are assumed to move in the model space of spd. The outer halo (1-neutron) in 19C is assumed to move in the pure 2s1/2 orbit. The elastic magnetic electron scattering of the stable 13C and exotic 19C nuclei are investigated through Plane Wave Born Approximation (PWBA). It is found that the difference between the
... Show MoreThe nucleon momentum distributions (NMD) for the ground state and elastic electron scattering form factors have been calculated in the framework of the coherent fluctuation model and expressed in terms of the weight function (fluctuation function). The weight function has been related to the nucleon density distributions of nuclei and determined from theory and experiment. The nucleon density distributions (NDD) is derived from a simple method based on the use of the single particle wave functions of the harmonic oscillator potential and the occupation numbers of the states. The feature of long-tail behavior at high momentum region of the NMD has been obtained using both the theoretical and experimental weight functions. The observed ele
... Show MoreThe organization uses many techniques and methods to ensure that they will succeed and adapted with velocity change in the internal and external environment by decision taking, especially strategic decisions.
Strategic decisions are very important for organization success because it can predict the future and deal with uncertainty, in this circumstances they need accurate and comprehensive information to make effective strategic decision.
To achieve that purpose it must owned successful Strategic Information System ( SIS ) and determined the critical success factors for this system ,which can assisted the worker to focus on the important activities to develop it.
... Show MoreThe ground state proton, neutron and matter densities of exotic 11Be and 15C nuclei are studied by means of the TFSM and BCM. In TFSM, the calculations are based on using different model spaces for the core and the valence (halo) neutron. Besides single particle harmonic oscillator wave functions are employed with two different size parameters Bc and Bv. In BCM, the halo nucleus is considered as a composite projectile consisting of core and valence clusters bounded in a state of relative motion. The internal densities of the clusters are described by single particle Gaussian wave functions.
Elastic electron scattering proton f
... Show MoreThe elastic magnetic electron scattering form factors and the magnetic dipole moments have been studied for the ground state of 19C (halo) (JπT= 1/2+ 7/2) nucleus carried out using psd-shell Millener-Kurath (PSDMK) interactions. The single-particle wave functions of harmonic-oscillator (HO) potential are used with two different oscillator parameters bcore and bhalo. According to this interaction, the core nucleons of 18C nucleus are assumed to move in the model space of spd. The outer halo (1-neutron) in 19C is assumed to move in the pure 2s1/2 orbit. The elastic magnetic electron scattering of the stable 13C and exotic 19C nuclei are investigated through Plane Wave Born Approximation (PWBA). It is found that the difference between the
... Show MoreThere are a few studies that discuss the medical causes for diabetic foot (DF) ulcerations in Iraq, one of them in Wasit province. The aim of our study was to analyze the medical, therapeutic, and patient risk factors for developing DF ulcerations among diabetic patients in Baghdad, Iraq.
Adhesion (type 1 fimbriae) and host defense avoidance mechanisms (capsule or lipopolysaccharide) have been shown to be prevalent in Escherichia coli isolates associated with urinary tract infections. In this work, 50 uropathogenic Escherichia coli (UPEC) isolated from children with urinary tract infections were genotypically characterized by polymerase chain reaction (PCR) assay. We used two genes; fimH and kpsMTII, both of them previously identified in uropathogenic E.coli (UPEC) isolates. The PCR assay results identified fimH (90.0)% and kpsMTII (72.0)% isolates. In the present study, was also demonstrated that these genes may be included in both or one of them within a single isolate.
In this paper, third order non-polynomial spline function is used to solve 2nd kind Volterra integral equations. Numerical examples are presented to illustrate the applications of this method, and to compare the computed results with other known methods.