This work deals with preparation of zeolite 5A from Dewekhala kaolin clay in Al-Anbar region for drying and desulphurization of liquefied petroleum gas. The preparation of zeolite 5A includes treating kaolin clay with dilute hydrochloric acid 1N, treating metakaolin with NaOH solution to prepare 4A zeolite, ion exchange, and formation. For preparation of zeolite 4A, metakaolin treated at different temperatures (40, 60, 80, 90, and 100 °C) with different concentrations of sodium hydroxide solution (1, 2, 3, and 4 N) for 2 hours. The zeolite samples give the best relative crystallinity of zeolite prepared at 80 °C with NaOH concentration 3N (199%), and at 90 and 100°C with NaOH concentration solution 2N (184% and 189%, respectively). Zeolite 5A was prepared by ion exchange of zeolite 4A prepared at 90°C and 2N NaOH concentration with 1.5 N calcium chloride solution at 90 °C and 5 hours, the ion exchange percentage was 66.6%. The formation experiments included mixing the prepared powder of 5A zeolite with different percentages of kaolin clay, citric acid and tartaric acid to form an irregular shape of zeolite granules. Tartaric acid binder gives higher bulk crushing strength than that obtained by using citric acid binder with no significant difference in the surface area. 7.5 weight% tartaric acid binder has the higher bulk crushing strength 206 newton with surface area 267.4 m2/g. Kaolin clay binder with 15 weight% gives the highest surface area 356 m2/g with bulk crushing strength 123 newton, it was chose as the best binder for zeolite 5A. The prepared granules of 5A zeolite were used for the adsorption experiments of H2O, and H2S contaminants from LPG. Different flow rates of LPG (3, 4, and 5 liter/minute) were studied. It was found that H2O is the strongly adsorbed component and H2S is the weakly adsorbed component. The best flow rate in this work for H2O, and H2S adsorption is 5 liter/minute of LPG. The adsorption capacity for H2O was 7.547 g/g and for H2S was 1.734 g/g.
The study was aims to evaluate the antimicrobial acttvtty of petroleum ether extracts from leaves , seeds and root of Zygophyllum fabago , against several microorganisms including gram negative bacteria (Pseudomonas aeruginosa & Escherichia coli), gram positive bacteria (Staphylluwccus aureus & Bacillus subtilis), in addition to yeast (Candida albicans).
While the results of sensitivity of the microorganisms to words petroleum ether extracts showed different activity , petrolewn ether extract of seeds showed more antimicrobial
... Show MoreThe presence of antibiotic residues such as ciprofloxacin (CIPR) in an aqueous environment is dangerous when their concentrations exceed the allowable. Therefore, eliminating these residues from the wastewater becomes an essential issue to prevent their harm. In this work, the potential of efficient adsorption of ciprofloxacin antibiotics was studied using eco-friendly ZSM-5 nanocrystals‑carbon composite (NZC). An inexpensive effective natural binder made of the sucrose-citric acid mixture was used for preparing NZC. The characterization methods revealed the successful preparation of NZC with a favorable surface area of 103.739 m2/g, and unique morphology and functional groups. Investigating the ability of NZC for adsorbing CIPR antibioti
... Show MoreThe evaluation of the Nfayil limestones in Bahr Al-Najaf Depression as construction materials was done on 15 sites distributed over a region. The study included field and laboratory aspects. The field side included collecting information about the study area and samples. As for the laboratory side, laboratory tests were conducted to study the thermal conductivity of samples by a device called Lee’s disc in the Tikri University. The thermal conductivity results ranged between 2.34 and 0.27. The rocks are of high thermal insulation at low temperatures and low insulation at high temperatures according to the specifications of the suitability of limestone for thermal conductivity standards (ASTM C 1057-03-2010).
The identification of a bed’s lithology is fundamental to all reservoir characterization because the physical and chemical properties of the rock that holds hydrocarbons and/or water affect the response of every tool used to measure formation properties. The main purpose of this study is to evaluate reservoir properties and lithological identification of Nahr Umr Formation in Luhais well -12 southern Iraq. The available well logs such as (sonic, density, neutron, gamma ray, SP, and resistivity logs) are digitized using the Didger software. The petrophysical parameters such as porosity, water saturation, hydrocarbon saturation, bulk water volume, etc. were computed and interpreted using Techlog software. The lithology prediction of Nahr
... Show MoreThe removal of heavy metal ions from wastewater by ion exchange resins ( zeolite and purolite C105), was investigated. The adsorption process, which is pH dependent, shows maximum removal of metal ions at pH 6 and 7 for zeolite and purolite C105 for initial metal ion
concentrations of 50-250 mg/l, with resin dose of 0.25-3 g. The maximum ion exchange capacity was found to be 9.74, 9.23 and 9.71 mg/g for Cu2+, Pb2+, and Ni2+ on zeolite respectively, while on purolite C105 the maximum ion exchange capacity was found to be 9.64 ,8.73 and 9.39 for Cu2+, Pb2+, and Ni2+ respectively. The maximum removal was 97-98% for Cu2+ and Ni2+ and 92- 93% for Pb2+ on zeolite, while it was 93-94% for Cu2+, 96-97% for Ni2+, and 87-88% for Pb2+ on puroli
The present research included sampling and analysis of 41 soil samples , the samples cover various areas of Nasiriyah city (industrial,commercial,residential and agricultural ) to estimate pollution levels of lead element and determine the correlation between lead concentration and natural factors in soil which represent sedimentary organic matter content, granular gradient, clay minerals and non-clay minerals . The results of the current study showed that the average concentration of lead in the soil samples was 61.12 ppm , it was noticed an increase in the concentration of lead in environmental components in the area of this study especially in residential , industrial and commercial location and the impact of natural factors of the so
... Show MoreDue to the deliberate disposal of industrial waste, a great amount of petroleum hydrocarbons pollute the soil and aquatic environments. Bioremediation that depends on the microorganisms in the removal of pollutants is more efficient and cost-effective technology. In this study, five rhizobacteria were isolated from Phragmites australis roots and exposed to real wastewater from Al-Daura refinery with 70 mg/L total petroleum hydrocarbons (TPH) concentration. The five selected rhizobacteria were examined in a biodegradation test for seven days to remove TPH. The results showed that 80% TPH degradation as the maximum value by Sphingomonas Paucimobilis as identified with Vitek® 2 Compact (France).
This thesis was aimed to study gas hydrates in terms of their equilibrium conditions in bulk and their effects on sedimentary rocks. The hydrate equilibrium measurements for different gas mixtures containing CH4, CO2 and N2 were determined experimentally using the PVT sapphire cell equipment. We imaged CO2 hydrate distribution in sandstone, and investigated the hydrate morphology and cluster characteristics via μCT. Moreover, the effect of hydrate formation on the P-wave velocities of sandstone was investigated experimentally.