The hydrodynamics of a co-current down flow bubble column has been investigated with air – water system. A Perspex bubble column of 5cm in diameter and 1.5m height is used as a test contactor using nozzles of 7, 8 and 9 mm diameter for air-water distributing. The column is provided with three electro-resistivity needle probes for bubble detection.
Experimental work is carried out with air flow rates from 0.09 to 0.45 m3/hr and liquid flow rates from 0.65 to 1.1m3/hr in order to study the effects of superficial gas velocity, nozzle diameter and liquid flow rate on the characteristics of hydrodynamic interactions viz. gas hold up, bubble diameter and bubble velocity by using two technical methods, direct height measurements for air-water mixture in the column and resistivity probe techniques.
Gas hold up is found to be progressively increased with increasing superficial gas velocity and with decreasing liquid flow rate. Lower gas hold up is obtained with smaller nozzle diameter. However, gas hold up in two-phase zone is considerably higher than the corresponding value in mixing zone.
The mean bubble velocity is increased with increasing superficial gas velocity, liquid flow rate and nozzle diameter for both mixing and two phase zones. Experimental data are found to be fairly fitted with the Drift Flux model of Zuber and Findly.
The bubble diameter is considerably increased with increasing superficial gas velocity and with decreasing liquid flow rate, whereas it is slightly influenced by nozzle diameter. However, the bubbles in two-phase zone are relatively bigger than those observed in mixing zone. Finally, mathematical correlations have been developed from the experimental data to describe the gas hold up and bubble velocity in the uniform two-phase zone.
For the time being, the cold-formed sections are widely used due to their simple manufacturing and construction processes. To be feasible, the strength of cold-formed columns should be determined based on their post-buckling behavior. Post-buckling relations are cumbersome and need design aids similar to those of American Iron and Steel Institute (AISI) to be applicable. These design aids have been developed to sections and materials other than those available in the local market. Therefore, this paper tries to develop a general finite element model to simulate the postbuckling behavior of cold-formed steel columns. Shell element has been used to discretize the web, flanges, and lips of the column. A linear bucking analy
... Show MoreThe design of fabrics and fashion is manifested by aesthetic advantages betting with the movement of society in its quest to develop as an independent art in itself that is linked to the values and aesthetic concepts of other arts and what appears in them of intellectual systems calling for renewal and modernity. Which brought about a wide change in public taste, as well as a desire for innovation . Which made fashion an interesting aesthetic phenomenon and taste is always subject to change constantly to comply with the social variables that occur in human life, as the fashion that appears in a certain era of time and takes a great distance from spreading as something new and out of the ordinary is in fact the fruit of the development of
... Show MoreCopper electrodeposition by electrorefining process in acidic sulfate media contains 40 g/l of cupric ions and 160 g/l of sulfuric acid was achieved to study the influence of the operating parameters on cathode purity, surface morphology, deposition rate, current efficiency and power consumption. These operating parameters and there ranges are: current density 200, 300 and 400 A/m2, electrolyte temperature 35, 50 and 65 oC, electrodes spacing 15, 30 and 45 mm and electrolyte residence time 6, 4 and 2 h were utilized. XRF, SEM and EDX analyses were attained to clarify the properties of the produced cathode.
In this study, method for experimentally determining the electron density (ne) and the electron temperature (Te) in the atmospheric Argon plasma jet is used; it is based on optical emission spectroscopy (OES). Boltzmann plot method used to calculate these parameters measured for different values of gas flow rate. The results show that the electron temperature decreasing with the increase of gas flow rate also indicates an increasing in the electron density of plasma jet with increasing of gas flow rate.
This work aim to prepare Ag/R6G/PMMA nanocomposite thin
films by In-situ plasma polymerization and study the changes in the
optical properties of fluorophore due to the presence of Ag
nanoparticles structures in the vicinity of the R6G laser dye. The
concentrations of R6G dye/MMA used are: 10-4M solutions were
prepared by dissolving the required quantity of the R6G dye in
MMAMonomer. Then Silver nanoparticles with 50 average particles
size were mixed with MMAmonomer with concentration of 0.3, 0.5,
0.7wt% to get R6G silver/MMA in liquid phase. The films were
deposited on glass substrates by dielectric barrier discharge plasma
jet. The Ag/R6G/PMMA nanocomposite thin films were
characterization by UV-Visible
The free piston engine linear generator (FPELG) is a simple engine structure with few components, making it a promising power generation system. However, because the engine works without a crankshaft, the handling of the piston motion control (PMC) is the main challenge influencing the stability and performance of FPELGs. In this article, the optimal operating parameters of FPELG for maximising engine performance and reducing exhaust gas emissions were studied. Moreover, the influence of adding hydrogen (H2) to compressed natural gas (CNG) fuel on FPELG performance was investigated. The influence of operating parameters on in-cylinder pressure was also analysed. The single-piston FPELG fuelled by CNG blended with H2 was used to run the expe
... Show MoreNew evidence on nanotechnology has shown interest in the creation and assessment of nanoparticles for cancer treatment. Worldwide, a wide range of tumor-targeted approaches are being developed to reduce side effects and boost the efficacy of cancer therapy. One strategy that shows promise is the use of metallic nanoparticles to increase the radio sensitization of the cancer cells while reducing or maintaining the normal tissue complication probability during radiation therapy. In this study, atmospheric plasma was created using argon gas to create Au NPs using the plasma jet scheme, and their ability to induce apoptosis as an anticancer mechanism was tested. Aqueous gold tetrachloride salts (HAuCl4·3H2O) ere used to produce gold nanopartic
... Show MoreA simple, rapid, sensitive and inexpensive approach is described in this work based on a combination of solid‐phase extraction of 8‐hydroxyquinoline (8HQ), for speciation and preconcentration of Cr(III) and Cr(VI) in river water, and the direct determination of these species using a flow injection system with chemiluminescence detection (FI–CL) and a 4‐diethylamino phenyl hydrazine (DEAPH)–hydrogen peroxide system. At different pH, the two forms of chromium [Cr(III) and Cr(VI)] have different exchange capacities for 8HQ, therefore two columns were constructed; the pH of column 1 was adjusted to pH 3 for retaining Cr(III) and column 2 was adjusted to pH 1 for retaining of Cr(VI). The sorbe