The hydrodynamics of a co-current down flow bubble column has been investigated with air – water system. A Perspex bubble column of 5cm in diameter and 1.5m height is used as a test contactor using nozzles of 7, 8 and 9 mm diameter for air-water distributing. The column is provided with three electro-resistivity needle probes for bubble detection.
Experimental work is carried out with air flow rates from 0.09 to 0.45 m3/hr and liquid flow rates from 0.65 to 1.1m3/hr in order to study the effects of superficial gas velocity, nozzle diameter and liquid flow rate on the characteristics of hydrodynamic interactions viz. gas hold up, bubble diameter and bubble velocity by using two technical methods, direct height measurements for air-water mixture in the column and resistivity probe techniques.
Gas hold up is found to be progressively increased with increasing superficial gas velocity and with decreasing liquid flow rate. Lower gas hold up is obtained with smaller nozzle diameter. However, gas hold up in two-phase zone is considerably higher than the corresponding value in mixing zone.
The mean bubble velocity is increased with increasing superficial gas velocity, liquid flow rate and nozzle diameter for both mixing and two phase zones. Experimental data are found to be fairly fitted with the Drift Flux model of Zuber and Findly.
The bubble diameter is considerably increased with increasing superficial gas velocity and with decreasing liquid flow rate, whereas it is slightly influenced by nozzle diameter. However, the bubbles in two-phase zone are relatively bigger than those observed in mixing zone. Finally, mathematical correlations have been developed from the experimental data to describe the gas hold up and bubble velocity in the uniform two-phase zone.
The health of Roadway pavement surface is considered as one of the major issues for safe driving. Pavement surface condition is usually referred to micro and macro textures which enhances the friction between the pavement surface and vehicular tires, while it provides a proper drainage for heavy rainfall water. Measurement of the surface texture is not yet standardized, and many different techniques are implemented by various road agencies around the world based on the availability of equipment’s, skilled technicians’ and funds. An attempt has been made in this investigation to model the surface macro texture measured from sand patch method (SPM), and the surface micro texture measured from out flow time (OFT) and British pendul
... Show MoreClobetasol propionate (CP) is a super potent corticosteroid widely used to treat various skin disorders such as atopic dermatitis and psoriasis. However, its utility for topical application is hampered due to its common side effects, such as skin atrophy, steroidal acne, hypopigmentation, and allergic contact dermatitis. Microsponge is a unique three-dimensional microstructure particle with micro and nano-meters-wide cavities, which can encapsulate both hydrophilic and lipophilic drugs providing increased efficacy and safety. The aim of the current study is to prepare and optimize clobetasol-loaded microsponges. The emulsion solvent diffusion method is used for the preparation of ethylcellulose (EC)-based microsponges. The impact of
... Show MoreThis study aims to enhance the RC5 algorithm to improve encryption and decryption speeds in devices with limited power and memory resources. These resource-constrained applications, which range in size from wearables and smart cards to microscopic sensors, frequently function in settings where traditional cryptographic techniques because of their high computational overhead and memory requirements are impracticable. The Enhanced RC5 (ERC5) algorithm integrates the PKCS#7 padding method to effectively adapt to various data sizes. Empirical investigation reveals significant improvements in encryption speed with ERC5, ranging from 50.90% to 64.18% for audio files and 46.97% to 56.84% for image files, depending on file size. A substanti
... Show MoreEpoxy (EP) – Silica (SiO2) composites are well known composites used in microelectronic industry . So it is important to study their dielectric behavior under different conditions such as
the presence carbon black (UV absorber) and immersion in the water for 30 days .
Dielectric properties were calculated over the frequency range 102 – 106 Hz for epoxy composites with different weight % of micrometer 1.5μm SiO2 particles (60%, 65% and 70wt%) modified with 0.5wt% silane coupling agent to improve adhesion between EP and SiO2 phases .
This research studied the effect of magnetized water in concrete preparation and its effect on the presenting of cement in concrete mixtures also to find the ability of reducing the amount of cement in preparing one cubic meter, this is not exceed than 10% in one mixture , The experiments showed the preparation of standard cubes from the concrete which was used two kind of water magnetized water which was prepared by passing the tap water through the systems of different magnetic strength in terms of (6000,9000) Gauss and the ordinary water . The velocity of water through the magnetic field, which gives us the highest value for the compressive strength, was up to 1m/sec. to determine the best magnetic intensity, we examined The comp
... Show MoreThe aim of this work is to evaluate some mechanical and physical
properties (i.e. the impact strength, hardness, flexural strength,
thermal conductivity and diffusion coefficient) of
(epoxy/polyurethane) blend reinforced with nano silica powder (2%
wt.). Hand lay-up technique was used to manufacture the composite
and a magnetic stirrer for blending the components. Results showed
that water had affected the bending flexural strength and hardness,
while impact strength increased and thermal conductivity decreased.
In addition to the above mentioned tests, the diffusion coefficient
was calculated using Fick’s 2nd law.
This study aims to find the effect of water-cement ratio on the compressive strength of concrete by using ultrasonic pulse velocity test (UPVT). Over 230 standard cube specimens were used in this study, with dimensions of 150mm, and concrete cubes were cured in water at 20 °C. Also, the specimens used in the study were made of concrete with varied water-cement ratio contents from 0.48 to 0.59. The specimens were taken from Diyarbakir-Turkey concrete centers and tested at the structure and material science lab, civil engineering, faculty of engineering from Dicle University. The UPV measurement and compressive strength tests were carried out at the concrete age of 28 days. Their UPV and compressive strength ranged
... Show More