Many carbonate reservoirs in the world show a tilted in originally oil-water contact (OOWC) which requires a special consideration in the selection of the capillary pressure curves and an understanding of reservoir fluids distribution while initializing the reservoir simulation models.
An analytical model for predicting the capillary pressure across the interface that separates two immiscible fluids was derived from reservoir pressure transient analysis. The model reflected the entire interaction between the reservoir-aquifer fluids and rock properties measured under downhole reservoir conditions.
This model retained the natural coupling of oil reservoirs with the aquifer zone and treated them as an explicit-region composite system; thus the exact solutions of diffusivity equation could be used explicitly for each region. The reservoir-aquifer zones were linked by a capillary transition zone that reflected the pressure difference across the free water level.
The principle of superposition theorem was applied to perform this link across the free water level to estimate the reflected aquifer pressure drop behavior that holds the fluid contacts in their equilibrium positions.
The results of originally oil water contact positions generated by the proposed model were compared with data obtained from a carbonate oil field; the results given by the model showed full agreement with the actual field data.
Thin films of vanadium oxide nanoparticles doped with different concentrations of europium oxide (2, 4, 6, and 8) wt % are deposited on glass and Si substrates with orientation (111) utilizing by pulsed laser deposition technique using Nd:YAG laser that has a wavelength of 1064 nm, average frequency of 6 Hz and pulse duration of 10 ns. The films were annealed in air at 300 °C for two hours, then the structural, morphological and optical properties are characterized using x-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM) and UV-Vis spectroscopy respectively. The X-ray diffraction results of V2O5:Eu2O3 exhibit that the film has apolycrystalline monoclinic V2O5 and triclinic V4O7 phases. The FESEM image shows a h
... Show MoreA confluence of forces has brought journalism and journalism education to a precipice. The rise of fascism, the advance of digital technology, and the erosion of the economic foundation of news media are disrupting journalism and mass communication (JMC) around the world. Combined with the increasingly globalized nature of journalism and media, these forces are posing extraordinary challenges to and opportunities for journalism and media education. This essay outlines 10 core principles to guide and reinvigorate international JMC education. We offer a concluding principle for JMC education as a foundation for the general education of college students.
At the last two decades , The environment has witnessed tremendous changes in many fields with the huge competition , various technological development and customer satisfaction , that are reflected in economic units a doption for lean production system .
Lean Accounting that has appeared as aresponse for changes occurred of economic units adoption for lean accounting system instead of wide production system : through it management of economic units has been changed from management by top departments into management by value flows : has provide new method for accounting costs according to value flow
... Show MoreThe constructed building in the urban area is subject to wind characteristics due to the influence of surrounding buildings. The residential complexes currently being built in Iraq represent a case study for the subject of this research. Therefore, the objective of this study is to identify the interference effect because of adjacent buildings effects on the mid-rise building. The speed and pressure of the wind have been numerically simulated as well as wind load has been simulated by using a virtual wind tunnel which is available in Autodesk Robot Structural Analysis, RSA, software. Two identical adjacent buildings have been simulated and many coefficients were included in this study such as the spacing, directionality,
... Show MoreIncreased downscaling of CMOS circuits with respect to feature size and threshold voltage has a result of dramatically increasing in leakage current. So, leakage power reduction is an important design issue for active and standby modes as long as the technology scaling increased. In this paper, a simultaneous active and standby energy optimization methodology is proposed for 22 nm sub-threshold CMOS circuits. In the first phase, we investigate the dual threshold voltage design for active energy per cycle minimization. A slack based genetic algorithm is proposed to find the optimal reverse body bias assignment to set of noncritical paths gates to ensure low active energy per cycle with the maximum allowable frequency at the optimal supply vo
... Show MoreIn this work, porous silicon (PS) are fabricated using electrochemical etching (ECE) process for p-type crystalline silicon (c-Si) wafers of (100) orientation. The structural, morphological and electrical properties of PS synthesized at etching current density of (10, 20, 30) mA/cm2 at constant etching time 10 min are studied. From X-ray diffraction (XRD) measurement, the value of FWHM is in general decreases with increasing current density for p-type porous silicon (p-PS). Atomic force microscope (AFM) showed that for p-PS the average pore diameter decreases at 20 mA. Porous silicon which formed on silicon will be a junction so I-V characteristics have been studied in the dark to calculate ideality factor (n), and saturation current (Is
... Show More