A liquid membrane process of Alkaloids extraction from Datura Innoxia solution was studied applying pertraction process in rotating discs contactor (RDC). Decane as a liquid membrane and dilute sulphuric acid as stripping solution were used. The effect of the fundamental parameters influencing the transport process, e.g. type of solvent used, effect of disks speed, amount of liquid membrane and effect of pH for feed and strip solution. The transport of alkaloids was analysed on the basis of kinetic laws of two consecutive irreversible first order reactions. Thus, the kinetic parameters (k1, k1, , tmax, and ) for the transport of alkaloids were determined. The effect of organic membrane type on percentage of Alkaloids transport was found to be in the order (n-decane> n-heptane> n-hexane> ethyl ether). The results showed that the highest alkaloids extraction was obtained when using two stages, (10 rpm) discs speed, (pH=9.5) of feed solution and (pH=2) of acceptor solution in n-decane. Observation showed that the membrane entrance rate constant k1 and percentage of alkaloids transported in strip phase increased with increasing numbers of stages but the exit rate constant k2 decreased. The alkaloids extraction ratio increased with increasing the disks speed from 5 to 10 rpm but decreased at 15 rpm and decreased when increasing the volume of membrane. Also pH of feed and strip solution affected the extraction ratio and rate constants.
A sensitive spectrophotometric method was developed for the estimation of cefdinir (CFD), a cephalosporin species. This study involves two methods, and the first method includes the preparing of azo dye by the reaction of CFD diazonium salt with 4-Tert-Butylphenol (4-TBP) and 2-Naphthol (2-NPT) in alkaline medium, which shows colored dyes measured at λmax 490 and 535 nm, respectively. Beer's law was obeyed along the concentration range of (3-100) μg.ml-1. The limits of detection were 0.246, 0.447 μg.ml-1 and molar absorptivities were 0.6129×104, 0.3361×104 L.mol-1cm-1 for (CFD-4-TBP) and (CFD-2-NPT), respectively. The second method includes preconcentration for cefdinir dyes by using cloud point extraction in the presence of Triton
... Show MoreThis investigation was carried out to study the treatment and recycling of wastewater in the Battery industry for an effluent containing lead ion. The reuse of such effluent can only be made possible by appropriate treatment method such as electro coagulation.
The electrochemical process, which uses a cell comprised aluminum electrode as anode and stainless steel electrode as cathode was applied to simulated wastewater containing lead ion in concentration 30 – 120 mg/l, at different operational conditions such as current density 0.4-1.2 mA/cm2, pH 6 -10 , and time 10 - 180 minute.
The results showed that the best operating conditions for complete lead removal (100%) at maximum concentration 120 mg/l was found to be 1.2 mA/cm2 cur
A total of 37 Staphylococcus epidermidis isolates, isolated from corneal scraping of patients with bacterial keratitis and 20 isolates from healthy eyes (as control) (all isolates, isolated from, Ibn Al- Haietham eye hospital / Baghdad), were tested for slime production, 52.63% of all isolates were positive-slime production (23 isolates from patients and 7 isolates from controls). It was found that positive-slime producing S. epidermidis were exhibited a high resistance to antibiotics as compared to negative-slime producing isolates.
This work deals with separation of the aromatic hydrocarbons benzene, toluene, and xylene (BTX) from reformate. The separation was examined using adsorption by molecular sieve zeolite 13X in a fixed bed process. The concentration of aromatic hydrocarbons in the influent and effluent streams was measured using gas chromatography. The effect of flow rate and bed length of adsorbent on the adsorption of multicomponent hydrocarbons and adsorption capacity of molecular sieve was studied. The tendency of aromatic hydrocarbons adsorption from reformate is in the order: benzene >toluene>xylenes.
For extraction chloro anion complexes of Cd2+ and Hg2+ used many organic agents as extractant according to liquid ion exchange method such as α-Naphthyl amine (α-NA), 4-Amino benzoic acid (4-ABA), 2-[(4-Carboxy methyl phenyl) azo]-4,5-diphenyl imidazole (4CMePADPI) and Cryptand (C222). This study includes definition hydrochloric acid concentration in aqueous phase and shaking with organic phase necessary for extraction as well as shaking time, organic solvent effect, interferences and alkaline salt effect. Thermodynamic showed the ion exchange reaction was exothermic for α-NA, C222 and endothermic for 4-ABA, 4-CMePADPI for extraction CdCl4=, but for extraction HgCl4= was exothermic with 4-ABA, 4CMePADPI and C222 but
... Show MoreAir pollution from various sources is one of the most serious environmental problems, especially after pollutants are deposited on the surface of the soil and leaves of the plants and then transferred to the rest of the plant and entering food chains. The present study was conducted to determine the effects of air pollution on different biochemical parameters in Eucalyptus sp. and calculation the Air Pollution Tolerance Index. The selected plant leaves were collected from five sites, four of them within the city of Baghdad, namely Al-Jadriya, Al-Andlous, Al-Doura and close to the private generators to represent the urban areas and Abu Ghraib site to represent the rural area. The leaves were taken on a seasonal basis for the period from Octo
... Show MorePseudomonas aeruginosa and Klebsiella pneumoniae appears good growth when replicate to culture with heavy crude oil. K. pneumoniae was less ability to biodegrade the heavy crude oil (66.22 wt.%) compare with P. aeruginosa 74 wt.%). Also the emulsion percent were about 64.8 % and 62.5 % for K. pneumoniae and P. aeruginosa, respectively. The results showed that the emulsions produced from both the strains decrease the surface tension of the media from 68.43 Mn/m (for control sample) to 44.50 and 43.30 Mn/m for P. aeruginosa and K. pneumoniae, respectively. The optimum temperature and pH for the hydrocarbons biodegradation were 28 ºC and 7, respectively. The incubation period of 28 days of the isolated increased hydrocarbons biodegradation
... Show More