Accurate and simple techniques for measurement of fluid rheological properties are important for field operations in the oil industry. Marsh Funnels are popular quality-control tools used in the field for drilling fluids and they offer a simple, practical alternative to viscosity measurement. In the normal measurements, a single point (drainage time) is used to determine an average viscosity; little additional information is extracted regarding the non-Newtonian behavior of the fluid.
Here, a new model is developed and used to determine the rheological properties of drilling muds and other non-Newtonian fluids using data of fluid density and drainage time collected from a Marsh Funnel as a function of viscosity. The funnel results for viscosity compare favorably to the values obtained from a commonly-used Fann 35 viscometer. Different quantities of bentonite, barite and other additives which have been used to prepare many samples. Empirical equations are obtained
μapp. = ρ (t – 28) and μapp. = -0.0118t2 + 1.6175t - 32.168,
where apparent viscosity (μapp.) in (cp), Marsh funnel time (t) in seconds and the density (ρ) in gm/cm3.
Theoretical calculation of the electronic current at N 3 contact with TiO 2 solar cell devices ARTICLES YOU MAY BE INTERESTED IN Theoretical studies of electronic transition characteristics of senstizer molecule dye N3-SnO 2 semiconductor interface AIP Conference. Available from: https://www.researchgate.net/publication/362813854_Theoretical_calculation_of_the_electronic_current_at_N_3_contact_with_TiO_2_solar_cell_devices_ARTICLES_YOU_MAY_BE_INTERESTED_IN_Theoretical_studies_of_electronic_transition_characteristics_of_senstiz [accessed May 01 2023].