Performance of gas-solid spouted bed benefit from solids uniformity structure (UI).Therefore, the focus of this work is to maximize UI across the bed based on process variables. Hence, UI is to be considered as the objective of the optimization process .Three selected process variables are affecting the objective function. These decision variables are: gas velocity, particle density and particle diameter. Steady-state solids concentration measurements were carried out in a narrow 3-inch cylindrical spouted bed made of Plexiglas that used 60° conical shape base. Radial concentration of particles (glass and steel beads) at various bed heights and different flow patterns were measured using sophisticated optical probes. Stochastic Genetic Algorithm (GA) has been found better than deterministic search for study mutation of process variables of the non-linear bed. Spouted bed behaved as hybrid system. Global GA could provide confirmed data and selected best operating conditions. Optimization technique would guide the experimental work and reduce the risk and cost of operation. Optimum results could improve operating of the bed at high-performance and stable conditions. Maximum uniformity has been found at high-density, small size of solid beads and low gas velocity. Density of solids has been effective variable on UI.Velocity of gas and diameter of solid particles has been observed more sensitive decision variables with UI mutations. Uniformity of solid particles would enhance hydrodynamic parameters, heat and mass transfer in the bed because of improving of hold-up and voids distributions of solids. The results of the optimization have been compared with the experimental data using sophisticated optical probe and Computed Tomography technique.
The catalytic activity of faujasite type NaY catalysts prepared from local clay (kaolin) with different Si/Al ratio was studied using cumene cracking as a model for catalytic cracking process in the temperature range of 450-525° C, weight hourly space velocity (WHSV) of 5-20 h1, particle size ≤75μm and atmospheric pressure. The catalytic activity was investigated using experimental laboratory plant scale of fluidized bed reactor.
It was found that the cumene conversion increases with increasing temperature and decreasing WHSV. At 525° C and WHSV 5 h-1, the conversion was 42.36 and 35.43 mol% for catalyst with 3.54 Si/Al ratio and Catalyst with 5.75 Si/Al ratio, respectively, while at 450° C and at the same WHSV, the conversion w
In this research, the removal of cadmium (Cd) from simulated wastewater was investigated by using a fixed bed bio-electrochemical reactor. The effects of the main controlling factors on the performance of the removal process such as applied cell voltage, initial Cd concentration, pH of the catholyte, and the mesh number of the cathode were investigated. The results showed that the applied cell voltage had the main impact on the removal efficiency of cadmium where increasing the applied voltage led to higher removal efficiency. Meanwhile increasing the applied voltage was found to be given lower current efficiency and higher energy consumption. No significant effect of initial Cd concentration on the removal efficiency of cadmium b
... Show MoreThis work was conducted to determine the volumetric mass transfer coefficient (Ky.a) infixed bed adsorption using hexane-benzene mixture by adsorption onto a fixed bed of white silica gel. Benzene concentration was measured by gas chromatography. The effect of feed flow rate and initial concentration of benzene in hexane-benzene mixture on the volumetric mass transfer coefficient and on the adsorption capacity of silica gel was investigated.
In general, the volumetric mass transfer coefficient increases with increasing hexane flow rate, and with increasing initial concentration of benzene in the mixture. The ultimate value of (Ky.a) was at 53 ml/min of hexane flow rate with benzene initial concentration of (6.53 wt. %), and it wa
... Show MorePreserving and saving energy have never been more important, thus the requirement for more effective and efficient heat exchangers has never been more important. However, in order to pave the way for the proposal of a truly efficient technique, there is a need to understand the shortcomings and strengths of various aspects of heat transfer techniques. This review aims to systematically identify these characteristics two of the most popular passive heat transfer techniques: nanofluids and helically coiled tubes. The review indicated that nanoparticles improve thermal conductivity of base fluid and that the nanoparticle size, as well as the concentrations of the nanoparticles plays a major role in the effectiveness of the nanofluids.
... Show More: Sound forecasts are essential elements of planning, especially for dealing with seasonality, sudden changes in demand levels, strikes, large fluctuations in the economy, and price-cutting manoeuvres for competition. Forecasting can help decision maker to manage these problems by identifying which technologies are appropriate for their needs. The proposal forecasting model is utilized to extract the trend and cyclical component individually through developing the Hodrick–Prescott filter technique. Then, the fit models of these two real components are estimated to predict the future behaviour of electricity peak load. Accordingly, the optimal model obtained to fit the periodic component is estimated using spectrum analysis and Fourier mod
... Show MoreThe main challenge is to protect the environment from future deterioration due to pollution and the lack of natural resources. Therefore, one of the most important things to pay attention to and get rid of its negative impact is solid waste. Solid waste is a double-edged sword according to the way it is dealt with, as neglecting it causes a serious environmental risk from water, air and soil pollution, while dealing with it in the right way makes it an important resource in preserving the environment. Accordingly, the proper management of solid waste and its reuse or recycling is the most important factor. Therefore, attention has been drawn to the use of solid waste in different ways, and the most common way is to use it as an alternative
... Show MoreEfficient and cost-effective drilling of directional wells necessitates the implementation of best drilling practices and advanced techniques to optimize drilling operations. Failure to adequately consider drilling risks can result in inefficient drilling operations and non-productive time (NPT). Although advanced drilling techniques may be expensive, they offer promising technical solutions for mitigating drilling risks. This paper aims to demonstrate the effectiveness of advanced drilling techniques in mitigating risks and improving drilling operations when compared to conventional drilling techniques. Specifically, the advanced drilling techniques employed in Buzurgan Oil Field, including vertical drilling with mud motor, managed pres
... Show MoreBioethanol is an attractive fuel with higher potential for energy security and environmental safety. Olive solid residues were used as a raw material for the production of bioethanol through the use of different preliminary treatments . Separate treatments with cellulose, hydrochloric acid (HCl 5%), sulfuric acid (H2SO4 2%), and liquid ammonia NH4OH (20%) were used to convert cellulose and hemicellulose into monosaccharaides. The production of ethanol was observed during the fermentation process using R. minuta under anaerobic conditions. After 3 days of fermentation, lowest concentrations of ethanol of 0.233, 0.249, 0.261, and 0.275 g/ l were produced from ol
... Show MoreLead-free 0.88(Na0.5Bi0.5)TiO3–0.084(K0.5Bi0.5)TiO3–0.036BaTiO3 (BNT–BKT–BT) piezoelectric ceramics were prepared using the conventional mixed-oxide method with a sintering temperature range of 1120–1200 °C. The effect of the sintering temperature on the crystal structure, microstructure, and densification, as well as the dielectrics, piezoelectrics, and the pyroelectric properties of BNT–BKT–BT ceramics were investigated. Scanning electron microscopy and X-ray diffraction were used to study the microstructures of the sintered samples. The results showed that the increase in sintering temperature was very effective in improving both the density and electrical properties. However, the samples deteriorated when the sintering te
... Show MoreS a mples of compact magnesia and alumina were evaporated
using CO2-laser .The
Processed powders were characterized by electron microscopy
and both scanning and transmission electron microscope. The results
indicated that the particle size for both powders have reduced largely
to 0.003 nm and 0.07 nm for MgO and Al2O3, with increasing in
shape sphericity.