Performance of gas-solid spouted bed benefit from solids uniformity structure (UI).Therefore, the focus of this work is to maximize UI across the bed based on process variables. Hence, UI is to be considered as the objective of the optimization process .Three selected process variables are affecting the objective function. These decision variables are: gas velocity, particle density and particle diameter. Steady-state solids concentration measurements were carried out in a narrow 3-inch cylindrical spouted bed made of Plexiglas that used 60° conical shape base. Radial concentration of particles (glass and steel beads) at various bed heights and different flow patterns were measured using sophisticated optical probes. Stochastic Genetic Algorithm (GA) has been found better than deterministic search for study mutation of process variables of the non-linear bed. Spouted bed behaved as hybrid system. Global GA could provide confirmed data and selected best operating conditions. Optimization technique would guide the experimental work and reduce the risk and cost of operation. Optimum results could improve operating of the bed at high-performance and stable conditions. Maximum uniformity has been found at high-density, small size of solid beads and low gas velocity. Density of solids has been effective variable on UI.Velocity of gas and diameter of solid particles has been observed more sensitive decision variables with UI mutations. Uniformity of solid particles would enhance hydrodynamic parameters, heat and mass transfer in the bed because of improving of hold-up and voids distributions of solids. The results of the optimization have been compared with the experimental data using sophisticated optical probe and Computed Tomography technique.
The present study dealt with the removal of methylene blue from wastewater by using peanut hulls (PNH) as adsorbent. Two modes of operation were used in the present work, batch mode and inverse fluidized bed mode. In batch experiment, the effect of peanut hulls doses 2, 4, 8, 12 and 16 g, with constant initial pH =5.6, concentration 20 mg/L and particle size 2-3.35 mm were studied. The results showed that the percent removal of methylene blue increased with the increase of peanut hulls dose. Batch kinetics experiments showed that equilibrium time was about 3 hours, isotherm models (Langmuir and Freundlich) were used to correlate these results. The results showed that the (Freundlich) model gave the best fitting for adsorption capacity. D
... Show MoreAbstract: The aim of the present work is to measure radon concentration in wood. Solid state nuclear track detectors of type CR – 39 was used as measurement device. Eight different samples of imported and local wood were collected from markets. Samples were grinded, dried in order to measure radon concentrations in it. Cylindrical diffusion tube was used as detection technique. Results show that the higher concentration was in Iraqi sample 1 which recorded (14.02 ± 0.9) Bq / m3, while the less was in Emirates Sample which recorded (5.35 ± 1.2) Bq / m3. From the present work, all wood samples were with lowest concentrations of radon gas than other building materials.
Efficient and cost-effective drilling of directional wells necessitates the implementation of best drilling practices and advanced techniques to optimize drilling operations. Failure to adequately consider drilling risks can result in inefficient drilling operations and non-productive time (NPT). Although advanced drilling techniques may be expensive, they offer promising technical solutions for mitigating drilling risks. This paper aims to demonstrate the effectiveness of advanced drilling techniques in mitigating risks and improving drilling operations when compared to conventional drilling techniques. Specifically, the advanced drilling techniques employed in Buzurgan Oil Field, including vertical drilling with mud motor, managed pres
... Show MoreIn this paper, the deterministic and the stochastic models are proposed to study the interaction of the Coronavirus (COVID-19) with host cells inside the human body. In the deterministic model, the value of the basic reproduction number determines the persistence or extinction of the COVID-19. If , one infected cell will transmit the virus to less than one cell, as a result, the person carrying the Coronavirus will get rid of the disease .If the infected cell will be able to infect all cells that contain ACE receptors. The stochastic model proves that if are sufficiently large then maybe give us ultimate disease extinction although , and this facts also proved by computer simulation.
An agricultural waste (walnut shell) was undertaken to remove Cu(II) from aqueous solutions in batch and continuous fluidized bed processes. Walnut shell was found to be effective in batch reaching 75.55% at 20 and 200 rpm, when pH of the solution adjusted to 7. The equilibrium was achieved after 6 h of contacting time. The maximum uptake was 11.94mg/g. The isotherm models indicated that the highest determination coefficient belongs to Langmuir model. Cu (II) uptake process in kinetic rate model followed the pseudo-second-order with determination coefficient of 0.9972. More than 95% of the Cu(II) were adsorbed on the walnut shells within 6 h at optimum agitation speed of 800 rpm. The main functional groups responsible for biosorption of
... Show MoreIn this paper a stirred-bed performed of the copper catalyzed synthesis of ethylchlorosilanes from silicon and ethyl chloride was described. A Si-catalyst mixture prepared by reaction of CuCl and Si was employed. The compositions of products were mainly ethyltrichlorosilane, diethyldichlorosilane, and ethyldichlorosilane and mainly depended on the extent of Cu in the mixture and the reaction temperature. A promoting effect on the extent of adsorption was observed on the addition of certain additives. The kinetic data revealed the direct depended of the reaction rate on C2H5Cl pressure.
Catalytic wet air oxidation of aqueous phenol solution was studied in a pilot plant trickle bed reactor using copper
oxide catalyst supported on alumina and silica. Catalysts were prepared by impregnating method. Effect of feed solution
pH (5.9, 7.3, and 9.2), gas flow rate (20%, 50%, 80%, and 100%), WHSV (1, 2, and 3 h-1), temperature (120°C, 140°C,
and 160°C), oxygen partial pressure (6, 9, 12 bar), and initial phenol concentration (1, 2, and 4 g/l).Generally, the
performance of the catalysts was better when the pH of feed solution was increased. The catalysts deactivation is related
to the dissolution of the metal oxides from the catalyst surface due to the acidic conditions. Phenol oxidation reaction
was strongly
A steganography hides information within other information, such as file, message, picture, or video. A cryptography is the science of converting the information from a readable form to an unreadable form for unauthorized person. The main problem in the stenographic system is embedding in cover-data without providing information that would facilitate its removal. In this research, a method for embedding data into images is suggested which employs least significant bit Steganography (LSB) and ciphering (RSA algorithm) to protect the data. System security will be enhanced by this collaboration between steganography and cryptography.
A problem of solid waste became in the present day common global problem among all countries, whether developing or developed countries, and can say that no country in the world today is immuning from this dilemma which must find appropriate solutions. The problem has reached a stage that can not ignore or delay, but has became a daily problem occupies the minds of ecologists, economists and politicians took occupies center front in the lists of priorities for the countries in terms of finding solutions to the rapid scientific and radical them. and that transport costs constitute an important component of total costs borne by the municipal districts in the process of disposal of solid waste, so any improvement in the
... Show More