Performance of gas-solid spouted bed benefit from solids uniformity structure (UI).Therefore, the focus of this work is to maximize UI across the bed based on process variables. Hence, UI is to be considered as the objective of the optimization process .Three selected process variables are affecting the objective function. These decision variables are: gas velocity, particle density and particle diameter. Steady-state solids concentration measurements were carried out in a narrow 3-inch cylindrical spouted bed made of Plexiglas that used 60° conical shape base. Radial concentration of particles (glass and steel beads) at various bed heights and different flow patterns were measured using sophisticated optical probes. Stochastic Genetic Algorithm (GA) has been found better than deterministic search for study mutation of process variables of the non-linear bed. Spouted bed behaved as hybrid system. Global GA could provide confirmed data and selected best operating conditions. Optimization technique would guide the experimental work and reduce the risk and cost of operation. Optimum results could improve operating of the bed at high-performance and stable conditions. Maximum uniformity has been found at high-density, small size of solid beads and low gas velocity. Density of solids has been effective variable on UI.Velocity of gas and diameter of solid particles has been observed more sensitive decision variables with UI mutations. Uniformity of solid particles would enhance hydrodynamic parameters, heat and mass transfer in the bed because of improving of hold-up and voids distributions of solids. The results of the optimization have been compared with the experimental data using sophisticated optical probe and Computed Tomography technique.
The aim of this research is to study the surface alteration characteristics and surface morphology of the superhydrophobic/hydrophobic nanocomposite coatings prepared by an electrospinning method to coat various materials such as glass and metal. This is considered as a low cost method of fabrication for polymer solutions of Polystyrene (PS), Polymethylmethacrylate (PMMA) and Silicone Rubber (RTV). Si were prepared in various wt% of composition for each solutions. Contact angle measurement, surface tension, viscosity, roughness tests were calculated for all specimens. SEM showed the morphology of the surfaces after coated. PS and PMMA showed superhydrophobic properties for metal substrate, while Si showed hydroph
... Show MoreThis paper presents the results of experimental investigations to predict the bearing capacity of square footing on geogrid-reinforced loose sand by performing model tests. The effects of several parameters were studied in order to study the general behavior of improving the soil by using the geogrid. These parameters include the eccentricity value, depth of first layer of reinforcement, and vertical spacing of reinforcement layers. The results of the experimental work indicated that there was an optimum reinforcement embedment depth at which the bearing capacity was the highest when single-layer reinforcement was used. The increase of (z/B) (vertical spacing of reinforcement layer/width of footing) above 1.5 has no effect on the re
... Show MoreIndirect electrochemical oxidation of phenol and its derivatives was investigated by using MnO2 rotating cylinder electrode. Taguchi experimental design method was employed to find the best conditions for the removal efficiency of phenol and its derivatives generated during the process. Two main parameters were investigated, current density (C.D.) and electrolysis time. The removal efficiency was considered as a response for the phenol and other organics removal. An orthogonal array L16, the signal to noise (S/N) ratio, and the analysis of variance were used to test the effect of designated process factors and their levels on the performance of phenol and other organics removal efficiency. The results showed that th
... Show MoreThe biochar prepared from sawdust raw material was applied in this study for the treatment of wastewater polluted with methyl orange dye. The effect of pH (2-11), initial concertation (50-250 mg/L) and time were studied. The isotherm of Langmuir, Frendluch and temkin models studied. The Langmuir model was the best to explain the adsorption process, maximum uptake was 136.67 mg/g at 25Co of methyl orange dye. Equilibrium reached after four hours of contact for most adsorbents.The values of thermodynamic parameters ∆G were negative at various temperatures, so the process spontaneous, while ∆H values were 16683 j/mol and ∆S values was 60.82 j/mol.k.
Two different oxidative desulfurization strategies based on oxidation/adsorption or oxidation/extraction were evaluated for the desulfurization of AL-Ahdab (AHD) sour crude oil (3.9wt% sulfur content). In the oxidation process, a homogenous oxidizing agent comprising of hydrogen peroxide and formic acid was used. Activated carbons were used as sorbent/catalyst in the oxidation/adsorption process while acetonitrile was used as an extraction solvent in the oxidation/extraction process. For the oxidation/adsorption scheme, the experimental results indicated that the oxidation desulfurization efficiency was enhanced on using activated carbon as catalyst/sorbent. The effects of the operating conditions (contact time, temperat
... Show MoreA cost-effective and efficient detector was created to conduct thorough turbidimetric measurements by reaction of Co (II) ion with calcium ferro cyanide to form bright green particulate, using the method of continuous flow injection analysis, the use of NAG-5SX1-1D-SSP Analyzer in determining cobalt (II) ion in a test for the validity of the new design. The NAG-5SX1-1D-SSP Analyzer is composed of five irradiation sources of white snow leds having the diameter of 10 mm with one solar cell of 55 mm length, 13.5 mm width. Using a selector switch to select the optimum voltage to be used which was 2.7 VDC. Under conditions of optimization, cobalt (II) ion was determined at 0.005–20 mmol. L–1(n = 23) while linearity dynamic range 0.005–7 mm
... Show MoreStick- slip is the continuous stopping& release of the Bit/BHA due to the irregular down-hole rotation prompted by the existing relationship between the friction torque and the torque applied from the surface to free the bit.
Friction coefficient between BHA and wellbore is the main player of stick slip amount, which can be mitigated by support a good lubricators as additives in drilling mud.
Mathematical (or empirical) solves should be done through adjusting all parameters which supposed to reduce stick- slip as low as possible using different models, one of the main parameters is drilling mud. As per Nanoparticles drilling fluid is a new technology that offers high performance
... Show More