Furfural is one of the one of pollutants in refinery industrial wastewaters. In this study advanced oxidation process using UV/H2O2 was investigated for furfural degradation in synthetic wastewater. The results from the experimental work showed that the degradation of furfural decreases as its concentration increases, reaching 100% at 50mg/l furfural concentration and increasing the concentration of H2O2 from 250 to 500 mg/l increased furfural removal from 40 to 60%.The degradation of furfural reached 100% after 90 min exposure time using two UV lamps, where it reached 60% using one lamp after 240 min exposure time. The rate of furfural degradation k increased at the pH and initial concentration of furfural decreased, but different H2O2concentrations indicated no significant effects on the reaction rate. UV/H2O2 process is effective for furfural degradation in wastewater at neutral pH where the disposal of such effluents will be within the environmental limitations.
In the present study, magnet silica-coated Ag2WO4/Ag2S nanocomposites (FOSOAWAS) were fabricated via a multistep method to address the drawbacks related to single photocatalysts (pure Ag2WO4 and pure Ag2S) and to clarify the significant influence of semiconductor heterojunction on the enhancement of visible-light-driven organic degradation. Different techniques were performed to investigate the elemental composition, morphology, magnetic and photoelectrochemical properties of the fabricated FOSOAWAS photocatalyst. The FOSOAWAS photocatalyst (1 g/L) exhibited excellent photodegradation efficiency (99.5%) against Congo red dye (CR = 20 ppm) after 140 min of visible-light illumination. This result confirmed the ability of the heterojunction be
... Show MoreWater scarcity is one of the most important problems facing humanity in various fields such as economics, industry, agriculture, and tourism. This may push people to use low-quality water like industrial-wastewater. The application of some chemical compounds to get rid of heavy metals such as cadmium is an environmentally harmful approach. It is well-known that heavy metals as cadmium may induce harmful problems when present in water and invade to soil, plants and food chain of a human being. In this case, man will be forced to use the low quality water in irrigation. Application of natural materials instead of chemicals to remove cadmium from polluted water is an environmental friendly approach. Attention was drawn in this research wor
... Show MoreThis work was conducted to study the extraction of eucalyptus oil from natural plants (Eucalyptus camaldulensis leaves) using water distillation method by Clevenger apparatus. The effects of main operating parameters were studied: time to reach equilibrium, temperature (70 to100°C), solvent to solid ratio (4:1 to 8:1 (v/w)), agitation speed (0 to 900 rpm), and particle size (0.5 to 2.5 cm) of the fresh leaves, to find the best processing conditions for achieving maximum oil yield. The results showed that the agitation speed of 900 rpm, temperature 100° C, with solvent to solid ratio 5:1 (v/w) of particle size 0.5 cm for 160 minute give the highest percentage of oil (46.25 wt.%). The extracted oil was examined by HPLC.
Toxicity with advanced glycation end products (AGEs) is a major problem in uremic patients. Treatment with peritoneal dialysis (PD) exacerbates AGE formation as a result of bioincompatibility of the conventional peritoneal dialysis fluid (PDF). The presence of glucose degradation products (GDPs) in PDF is the main cause of its bioincompatibility. Carnosine is an endogenous dipeptide with a powerful antiglycation/antioxidant activity. In an attempt to improve PDF biocompatibility, we evaluated the effect of carnosine in human peritoneal mesothelial cells (HPMC) incubated with PDF or GDPs in vitro. Methods: HPMC were incubated for short or prolonged time with PDF in the presence or absence of carnosine. Similarly, HPMC were incubated in the s
... Show MoreThe present study aimed to use the magnetic field and nanotechnology in the field of water purification, which slots offering high efficiency to the possibility of removing biological contaminants such as viruses and bacteria rather than the use of chemical and physical transactions such as chlorine and bromine, and ultraviolet light and boiling and sedimentation and distillation, ozone and others that have a direct negative impact on human safety and the environment. Where they were investigating the presence in water samples under study Coli phages using Single agar layer method and then treated samples positive for phages to three types of magnetic field fixed as follows (North Pole - South Pole - Bipolar) and compare the re
... Show MoreRemoving Congo red (CR) is critical in wastewater treatment. We introduce a combination of electrocoagulation (EC) and electro-oxidation (EO) to address the elimination of CR. We also discuss the deposition of triple oxides (Cu–Mn–Ni) simultaneously on both anodic and cathodic graphite electrodes at constant current density. These electrodes efficiently worked as anodes in the EC-EO system. The EC-CO combination eliminated around 98 % of the CR dye and about 95 % of the Chemical Oxygen demand (COD), and similar results were obtained with the absence of NaCl. Thus, EC-EO is a promising technique to remove CR in an environmentally friendly pathway.
The effect of UV-light on the tensile properties of pure PC has been studied. It was shown that irradiation of PC undergo a drop in the tensile properties of 30 hour of exposure. The results of irradiated samples shows that the addition of ZnO and TiO2 with different percentages (0.5, 1, 1.5 %) will reduce the Young modulus and ultimate stress of PC/ZnO ,PC/ TiO2 composites