Preferred Language
Articles
/
ijcpe-249
Modelling and Optimization of Carbon Steel Corrosion in CO2 Containing Oilfield Produced Water in Presence of HAc
...Show More Authors

Previously, many empirical models have been used to predict corrosion rates under different CO2 corrosion parameters conditions. Most of these models did not predict the corrosion rate exactly, besides it determined effects of variables by holding some variables constant and changing the values of other variables to obtain the regression model. As a result the experiments will be large and cost too much. In this paper response surface methodology (RSM) was proposed to optimize the experiments and reduce the experimental running. The experiments studied effects of temperature (40 – 60 °C), pH (3-5), acetic acid (HAc) concentration (1000-3000 ppm) and rotation speed (1000-1500 rpm) on CO2 corrosion performance of the regression model calculated by RSM. The experiments were conducted in saturated solution of CO2 with 3.5 % NaCl solution. STATISTICA program version 10 was used for data analysis. In conclusion a quadratic model is proposed to predict the effect of mentioned variables in CO2 environment.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Apr 01 2022
Journal Name
Baghdad Science Journal
Data Mining Techniques for Iraqi Biochemical Dataset Analysis
...Show More Authors

This research aims to analyze and simulate biochemical real test data for uncovering the relationships among the tests, and how each of them impacts others. The data were acquired from Iraqi private biochemical laboratory. However, these data have many dimensions with a high rate of null values, and big patient numbers. Then, several experiments have been applied on these data beginning with unsupervised techniques such as hierarchical clustering, and k-means, but the results were not clear. Then the preprocessing step performed, to make the dataset analyzable by supervised techniques such as Linear Discriminant Analysis (LDA), Classification And Regression Tree (CART), Logistic Regression (LR), K-Nearest Neighbor (K-NN), Naïve Bays (NB

... Show More
View Publication Preview PDF
Scopus (2)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Mon Jun 22 2020
Journal Name
Baghdad Science Journal
Using Evolving Algorithms to Cryptanalysis Nonlinear Cryptosystems
...Show More Authors

            In this paper, new method have been investigated using evolving algorithms (EA's) to cryptanalysis one of the nonlinear stream cipher cryptosystems which depends on the Linear Feedback Shift Register (LFSR) unit by using cipher text-only attack. Genetic Algorithm (GA) and Ant Colony Optimization (ACO) which are used for attacking one of the nonlinear cryptosystems called "shrinking generator" using different lengths of cipher text and different lengths of combined LFSRs. GA and ACO proved their good performance in finding the initial values of the combined LFSRs. This work can be considered as a warning for a stream cipher designer to avoid the weak points, which may be f

... Show More
View Publication Preview PDF
Scopus (10)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Sat Sep 30 2017
Journal Name
Al-khwarizmi Engineering Journal
A Cognitive Hybrid Tuning Control Algorithm Design for Nonlinear Path-Tracking Controller for Wheeled Mobile Robot
...Show More Authors

Abstract

This research presents a on-line cognitive tuning control algorithm for the nonlinear controller of path-tracking for dynamic wheeled mobile robot to stabilize and follow a continuous reference path with minimum tracking pose error. The goal of the proposed structure of a hybrid (Bees-PSO) algorithm is to find and tune the values of the control gains of the nonlinear (neural and back-stepping method) controllers as a simple on-line with fast tuning techniques in order to obtain the best torques actions of the wheels for the cart mobile robot from the proposed two controllers. Simulation results (Matlab Package 2012a) show that the nonlinear neural controller with hybrid Bees-PSO cognitive algorithm is m

... Show More
View Publication Preview PDF
Publication Date
Mon Nov 21 2022
Journal Name
Sensors
Deep Learning-Based Computer-Aided Diagnosis (CAD): Applications for Medical Image Datasets
...Show More Authors

Computer-aided diagnosis (CAD) has proved to be an effective and accurate method for diagnostic prediction over the years. This article focuses on the development of an automated CAD system with the intent to perform diagnosis as accurately as possible. Deep learning methods have been able to produce impressive results on medical image datasets. This study employs deep learning methods in conjunction with meta-heuristic algorithms and supervised machine-learning algorithms to perform an accurate diagnosis. Pre-trained convolutional neural networks (CNNs) or auto-encoder are used for feature extraction, whereas feature selection is performed using an ant colony optimization (ACO) algorithm. Ant colony optimization helps to search for the bes

... Show More
View Publication
Scopus (32)
Crossref (28)
Scopus Clarivate Crossref
Publication Date
Sun Jun 01 2014
Journal Name
Journal Of Economics And Administrative Sciences
Different Methods for Estimating Location Parameter & Scale Parameter for Extreme Value Distribution
...Show More Authors

      In this study, different methods were used for estimating location parameter  and scale parameter for extreme value distribution, such as maximum likelihood estimation (MLE) , method of moment  estimation (ME),and approximation  estimators based on percentiles which is called white method in estimation, as the extreme value distribution is one of exponential distributions. Least squares estimation (OLS) was used, weighted least squares estimation (WLS), ridge regression estimation (Rig), and adjusted ridge regression estimation (ARig) were used. Two parameters for expected value to the percentile  as estimation for distribution f

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Oct 22 2024
Journal Name
Iraqi Statisticians Journal
Inferential Methods for the Dagum Regression Model
...Show More Authors

The Dagum Regression Model, introduced to address limitations in traditional econometric models, provides enhanced flexibility for analyzing data characterized by heavy tails and asymmetry, which is common in income and wealth distributions. This paper develops and applies the Dagum model, demonstrating its advantages over other distributions such as the Log-Normal and Gamma distributions. The model's parameters are estimated using Maximum Likelihood Estimation (MLE) and the Method of Moments (MoM). A simulation study evaluates both methods' performance across various sample sizes, showing that MoM tends to offer more robust and precise estimates, particularly in small samples. These findings provide valuable insights into the ana

... Show More
View Publication Preview PDF
Publication Date
Wed Mar 10 2021
Journal Name
Baghdad Science Journal
New Method for the On-Line Determination of Molybdenum Via New Microphotometric Home Mode Instrument, Using Hight Emitting Diode as a Variable Intensity Radiant Source with a Miniture Photosilicone Diode Detector for System: Molybdenum(VI)-Hydrogen Peroxide-Ammonium Solution
...Show More Authors

This research work aims to the determination of molybdenum (VI) ion via the formation of peroxy molybdenum compounds which has red-brown colour with absorbance wave length at 455nm for the system of ammonia solution-hydrogen peroxide-molybdenum (VI) using a completely newly developed microphotometer based on the ON-Line measurement. Variation of responses expressed in millivolt. A correlation coefficient of 0.9925 for the range of 2.5-150 ?g.ml-1 with percentage linearity of 98.50%. A detection limit of 0.25 ?g.ml-1 was obtained. All physical and chemical variable were optimized interferences of cation and anion were studied classical method of measurement were done and compared well with newly on-line measurements. Application for the use

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Jan 14 2018
Journal Name
Journal Of Engineering
A Nonlinear MIMO-PID Neural Controller Design for Vehicle Lateral Dynamics model based on Modified Elman Neural Network
...Show More Authors

This paper presents a new design of a nonlinear multi-input multi-output PID neural controller of the active brake steering force and the active front steering angle for a 2-DOF vehicle model based on modified Elman recurrent neural. The goal of this work is to achieve the stability and to improve the vehicle dynamic’s performance through achieving the desired yaw rate and reducing the lateral velocity of the vehicle in a minimum time period for preventing the vehicle from slipping out the road curvature by using two active control actions: the front steering angle and the brake steering force. Bacterial forging optimization algorithm is used to adjust the parameters weights of the proposed controller. Simulation resul

... Show More
View Publication Preview PDF
Publication Date
Thu May 18 2023
Journal Name
Journal Of Engineering
A Modified Strength Pareto Evolutionary Algorithm 2 based Environmental /Economic Power Dispatch
...Show More Authors

A Strength Pareto Evolutionary Algorithm 2 (SPEA 2) approach for solving the multi-objective Environmental / Economic Power Dispatch (EEPD) problem is presented in this paper. In the past fuel cost consumption minimization was the aim (a single objective function) of economic power dispatch problem. Since the clean air act amendments have been applied to reduce SO2 and NOX emissions from power plants, the utilities change their strategies in order to reduce pollution and atmospheric emission as well, adding emission minimization as other objective function made economic power dispatch (EPD) a multi-objective problem having conflicting objectives. SPEA2 is the improved version of SPEA with better fitness assignment, density estimation, an

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Oct 18 2025
Journal Name
Pattern Recognition And Artificial Intelligence
Utilizing Energy-Efficient Deep Learning Technique for Age Estimation Through a Hybrid Methodology
...Show More Authors

This study employs evolutionary optimization and Artificial Intelligence algorithms to determine an individual’s age using a single-faced image as the basis for the identification process. Additionally, we used the WIKI dataset, widely considered the most comprehensive collection of facial images to date, including descriptions of age and gender attributes. However, estimating age from facial images is a recent topic of study, even though much research has been undertaken on establishing chronological age from facial photographs. Retrained artificial neural networks are used for classification after applying reprocessing and optimization techniques to achieve this goal. It is possible that the difficulty of determining age could be reduce

... Show More
View Publication
Scopus Crossref