Previously, many empirical models have been used to predict corrosion rates under different CO2 corrosion parameters conditions. Most of these models did not predict the corrosion rate exactly, besides it determined effects of variables by holding some variables constant and changing the values of other variables to obtain the regression model. As a result the experiments will be large and cost too much. In this paper response surface methodology (RSM) was proposed to optimize the experiments and reduce the experimental running. The experiments studied effects of temperature (40 – 60 °C), pH (3-5), acetic acid (HAc) concentration (1000-3000 ppm) and rotation speed (1000-1500 rpm) on CO2 corrosion performance of the regression model calculated by RSM. The experiments were conducted in saturated solution of CO2 with 3.5 % NaCl solution. STATISTICA program version 10 was used for data analysis. In conclusion a quadratic model is proposed to predict the effect of mentioned variables in CO2 environment.
The design of reinforced concrete spread foundations mainly depends on soil bearing capacity, loading value, and column size. So for each design case, tiresome calculations and time consumption are needed. In this paper, generalized design charts are presented and plotted according to derivations based on the ACI 318 M-2019 Code. These charts could be used directly by the structural designers to estimate the column size, foundation thickness, and dimensions as well as the foundation reinforcement under a certain given concentric load assuming a uniformly distributed contact pressure underneath the foundation. Of noteworthy, these charts are oriented to deal with square isolated footings with a square concentric column, covering reasonable r
... Show MoreDeep eutectic solvents (DESs) are considered as relativity green solvents in comparison with ionic liquids and organic solvents. DESs are used in nanotechnology applications due to their unique physiochemical properties, efficient dispersants and they can be easily prepared in high purity at low cost. Other advantages include their nontoxicity, no reactivity with water and being biodegradable. DESs have recently attracted much attention in various fields, especially in the field of nanotechnology in controlling the size, surface chemistry and morphology of the nanomaterials and in the processing of advanced functional nanomaterials. As a result, various studies have been undertaken to investigate the physicochemical characteristics of the c
... Show MorePolyaniline Multi wall Carbon nanotube (PANI/MWCNTs) nanocomposite thin films have been prepared by Plasma jet polymerization at low frequency on glass substrate with preliminary deposited aluminum electrodes to form Al/PANI-MWCNT/Al surface-type capacitive humidity sensors, the gap between the electrodes about 50 μm and the MWCNTs weight concentration varied between 0, 1, 2, 3, 4%. The diameter of the MWCNTs was in the range of 8-15 nm and the length 10-55 μm. The capacitance-humidity relationships of the sensors were investigated at humidity levels from 35 to 90% RH. The electrical properties showed that the capacity increased with increasing relative humidity, and that the sensitivity of the sensor increases with the increase of the
... Show MoreThis research work involves the preparation of nano activated carbonand macro activated carbon from corn seeds with a various mixing ratio ofpotassium hydroxide (1:0, 1:0.2, 1:0.4, 1:0.6, 1:0.8 and 1:1) % using thermaland micro radiation carbonization to identify the best mixing ratio. At studyto confirmed that the efficiency and effectiveness of the prepared of activatedcarbon samples increase when ratio potassium hydroxide increase with athermal and micro radiation carbonization was used. The study of samplesexternal surface area was performed via studying the adsorption of methyleneblue from their aqueous solution, also measured the internal surface area wasperformed via studying the adsorption of iodine from their aqueous solution.Measu
... Show MoreIn recent years, Bitcoin has become the most widely used blockchain platform in business and finance. The goal of this work is to find a viable prediction model that incorporates and perhaps improves on a combination of available models. Among the techniques utilized in this paper are exponential smoothing, ARIMA, artificial neural networks (ANNs) models, and prediction combination models. The study's most obvious discovery is that artificial intelligence models improve the results of compound prediction models. The second key discovery was that a strong combination forecasting model that responds to the multiple fluctuations that occur in the bitcoin time series and Error improvement should be used. Based on the results, the prediction acc
... Show MoreThis paper proposes an on-line adaptive digital Proportional Integral Derivative (PID) control algorithm based on Field Programmable Gate Array (FPGA) for Proton Exchange Membrane Fuel Cell (PEMFC) Model. This research aims to design and implement Neural Network like a digital PID using FPGA in order to generate the best value of the hydrogen partial pressure action (PH2) to control the stack terminal output voltage of the (PEMFC) model during a variable load current applied. The on-line Particle Swarm Optimization (PSO) algorithm is used for finding and tuning the optimal value of the digital PID-NN controller (kp, ki, and kd) parameters that improve the dynamic behavior of the closed-loop digital control fue
... Show MoreArtificial Neural networks (ANN) are powerful and effective tools in time-series applications. The first aim of this paper is to diagnose better and more efficient ANN models (Back Propagation, Radial Basis Function Neural networks (RBF), and Recurrent neural networks) in solving the linear and nonlinear time-series behavior. The second aim is dealing with finding accurate estimators as the convergence sometimes is stack in the local minima. It is one of the problems that can bias the test of the robustness of the ANN in time series forecasting. To determine the best or the optimal ANN models, forecast Skill (SS) employed to measure the efficiency of the performance of ANN models. The mean square error and
... Show MoreThe using of the parametric models and the subsequent estimation methods require the presence of many of the primary conditions to be met by those models to represent the population under study adequately, these prompting researchers to search for more flexible models of parametric models and these models were nonparametric models.
In this manuscript were compared to the so-called Nadaraya-Watson estimator in two cases (use of fixed bandwidth and variable) through simulation with different models and samples sizes. Through simulation experiments and the results showed that for the first and second models preferred NW with fixed bandwidth fo
... Show MoreThe support vector machine, also known as SVM, is a type of supervised learning model that can be used for classification or regression depending on the datasets. SVM is used to classify data points by determining the best hyperplane between two or more groups. Working with enormous datasets, on the other hand, might result in a variety of issues, including inefficient accuracy and time-consuming. SVM was updated in this research by applying some non-linear kernel transformations, which are: linear, polynomial, radial basis, and multi-layer kernels. The non-linear SVM classification model was illustrated and summarized in an algorithm using kernel tricks. The proposed method was examined using three simulation datasets with different sample
... Show More