The present study deals with the application of an a bundant low cost biosorbent sunflower shell for metal ions removal. Lead, Cadmium and Zinc were chosen as model sorbates. The influences of initial pH, sorbent dosage, contact time, temperature and initial metal ions concentration on the removal efficiency were examined. The single ion equilibrium sorption data were fitted to the non-competitive Langmuir and Freundlich isotherm models. The Freundlich model represents the equilibrium data better than the Langmuir model. In single, binary and ternary component systems,Pb+2 ions was the most favorable component rather than Cd+2 and Zn+2 ions. The biosorption kinetics for the three metal ions followed the pseudo-second order kinetics indicating that the chemical sorption was the rate-limiting step. The thermodynamic parameters including free energy ( G0), enthalpy and entropy changes for Pb2+,Cd2+ and Zn2+ ions indicated that the sorption process was feasible,spontaneous,and endothermic in the temperature range 20-50 0 C .Desorption of the three metals ions from the biosorbent was effectively achieved in a 0.2 mol L-1 HCl solution.
Combining different treatment strategies successively or simultaneously has become recommended to achieve high purification standards for the treated discharged water. The current work focused on combining electrocoagulation, ion-exchange, and ultrasonication treatment approaches for the simultaneous removal of copper, nickel, and zinc ions from water. The removal of the three studied ions was significantly enhanced by increasing the power density (4–10 mA/cm2) and NaCl salt concentration (0.5–1.5 g/L) at a natural solution pH. The simultaneous removal of these metal ions at 4 mA/cm2 and 1 g NaCl/L was highly improved by introducing 1 g/L of mordenite zeolite as an ion-exchanger. A remarkable removal of heavy metals was reported
... Show MoreCombining different treatment strategies successively or simultaneously has become recommended to achieve high purification standards for the treated discharged water. The current work focused on combining electrocoagulation, ion-exchange, and ultrasonication treatment approaches for the simultaneous removal of copper, nickel, and zinc ions from water. The removal of the three studied ions was significantly enhanced by increasing the power density (4–10 mA/cm2) and NaCl salt concentration (0.5–1.5 g/L) at a natural solution pH. The simultaneous removal of these metal ions at 4 mA/cm2 and 1 g NaCl/L was highly improved by introducing 1 g/L of mordenite zeolite as an ion-exchanger. A remarkable removal of heavy metals was reported
... Show MoreIn this study, aromatic polyamide reverse osmosis membranes were used to remove zinc ions from electroplating wastewater. Influence of different operating conditions such as time, zinc concentration and pressure on reverse osmosis process efficiency was studied. The experimental results showed, concentration of zinc in permeate increase with increases of time from 0 to 70 min, and flux of water through membrane decline with time. While, the concentrations of zinc in permeate increase with the increase in feed zinc concentration (10–300 mg/l), flux decrease with the increment of feed concentration. The raise of pressure from 1 to 4 bar, the zinc concentration decreases and the flux increase. The highest recovery percentage was found is 54.
... Show MoreIn this study, aromatic polyamide reverse osmosis membranes were used to remove zinc ions from electroplating wastewater. Influence of different operating conditions such as time, zinc concentration and pressure on reverse osmosis process efficiency was studied. The experimental results showed, concentration of zinc in permeate increase with increases of time from 0 to 70 min, and flux of water through membrane decline with time. While, the concentrations of zinc in permeate increase with the increase in feed zinc concentration (10–300 mg/l), flux decrease with the increment of feed concentration. The raise of pressure from 1 to 4 bar, the zinc concentration decreases and the flux increase. The highest recovery percentage was fou
... Show MoreTwo field experiments were conducted during the spring seasons of 2000,2001.The aim was to study the effect of hardening to drought tolerance on moisture percentage in root and stem of sunflower plant during growth stages . Asplit-split plots design was used with three replications.The main plots included irrigation treatments:irrigation to100%(full irrigation),75and50%of available soil water.The sub plots were the cultivars Euroflor and Flame.The sub-sub plots represented four seed soaking treatments :Control(unsoaked),soaking in water ,Paclobutrazol solution(250ppm),and Pix solution(500ppm). The soaking continued for 24 hours then seeds were dried at room temperature until they regained their original weight. Amount of water
... Show MoreGas hydrate formation is considered one of the major problems facing the oil and gas industry as it poses a significant threat to the production, transportation and processing of natural gas. These solid structures can nucleate and agglomerate gradually so that a large cluster of hydrate is formed, which can clog flow lines, chokes, valves, and other production facilities. Thus, an accurate predictive model is necessary for designing natural gas production systems at safe operating conditions and mitigating the issues induced by the formation of hydrates. In this context, a thermodynamic model for gas hydrate equilibrium conditions and cage occupancies of N2 + CH4 and N2 + CO4 gas mix
The critical micelle concentration (CMC) of nonylphenolethoxylate (NPE) surfactant has been determined by measuring the surface tension as a function of the molar concentration of the surfactant in aqueous and binary mixture of water + methanol solutions at a temperature range from 20?C to 35?C. The interfacial parameters ?max, Amin, ?cmc and ?G?ads were calculated. The results indicate that the CMC increases as the temperature increases and that the addition of methanol the CMC decreases. The thermodynamic parameters such as standard Gibbs free energy (?G?), enthalpy (?H?), and entropy (?S?) of micellization were estimated using the change of CMC with temperature. The enthalpy – entropy compensation behavior of the surfactant was evaluat
... Show MoreThe adsorption behavior of congo red dye from its aqueous solutions was investigated onto natural and modified bauxite clays. Both bauxite and modified bauxite are primarily characterized by using, FTIR, SEM, AFM, and XRD. Several variables are studied as a function of adsorption including contact time, adsorbent weight, pH, ionic strength, particle size and temperature under batch adsorption technique. The absorbance of the solution before and after adsorption was measured spectrophotometrically. The equilibrium data fit with Langmuir model of adsorption and the linear regression coefficient R2 is found to be 0.9832 and 0.9630 for natural and modified bauxite respectively at 37.5°C which elucidate the best fitting isotherm model. The gene
... Show MoreIt was aimed to investigate the compressibility, compactibility, powder flow and tablet disintegration of a new excipient comprising magnesium (Mg) silicate co-processed (5%–85% w/w) onto chitin, microcrystalline cellulose (MCC) and starch as the hydrophilic polymers of interest. Initially, the mechanism of tablet disintegration was studied by measuring water infiltration rate, moisture sorption, swelling capacity and hydration ability. Moreover, the powders compression behavior was carried out by applying Kawakita model of compression analysis in addition to porosity and radial tensile strength measurements. In vitro drug release of compacts made of 400 mg ibuprofen and 300 mg of the hydrophilic polymers containing 30% w/w Mg silicat
... Show MoreABSTRACT: Thin film of CdS has been deposited onto clean glass substrate by using Spray pyrolysis technique. Results of Morphological (AFM) studied; electrical properties and optical conductivity studied are analysis. AFM results show a crystalline nature of the films. From the conductivity measurement at different temperatures, the activation energy of the films was calculated and found to be between 0.188 - 0.124 eV for low temperature regions, and between 1.67-1.19eV for high temperature regions. Hall measurements of electrical properties at room temperature show that the resistivity and mobility of CdS polycrystalline films deposited at 400 C0, were 3.878x103 . cm and 1.302x104cm2/ (V.s), respectively. The electrical conductivity of th
... Show More