An investigation was conducted effect of addition co- solvent on solvent extraction process for two types of a lubricating oil fraction (spindle) and (SAE-30) obtained from vacuum distillation unit of lube oil plant of Daura Refinery. In this study two types of co-solvents ( formamide and N-methyl, 2, pyrrolidone) were blended with furfural to extract aromatic hydrocarbons which are the undesirable materials in raw lubricating oil, in order to improve the viscosity index, viscosity and yield of produced lubricating oil. The studied operating condition are extraction temperature range from 70 to 110 °C for formamide and 80 to 120 °C for N-methyl, 2, pyrrolidone, solvent to oil ratio range from 1:1 to 2:1 (wt./wt.) for furfural with formamide extraction and 1:1 to 3:1 (wt./wt.) for furfural with NMP extraction. The results of the investigation show that the viscosity index of lubricating oil fraction increases while viscosity and percentage yield of raffinate decreases with increasing extraction temperature, the solvent to oil ratio and co-solvent to furfural ratio. For formamide the best temperature were 90 °C, furfural to co-solvent ratio (60:40) and solvent to lube oil ratio (1.5:1) to get best value of viscosity index 102, viscosity 3.01 cst and 69.23 % yield. While for NMP co-solvent 110 °C extraction temperature, (2:1) solvent to lube oil ratio and (60:40) furfural to co-solvent ratio, to produce lube oil with 96 viscosity index, 9.10 cst viscosity and 68.50 yield.
Four major factories (Petroleum Refineries Company, Detergents Plant, Thermal Power Plant, and Gaseous Power Plant) are located to the north of Baiji City. They release pollutants in form of gases, liquids and solids; they find their way to the surrounding environment. To assess the environmental pollution of the area, 18 samples of surface soil distributed around the industrial establishments were collected and analyzed to determine the concentration of polycyclic aromatic hydrocarbons (PAH) components which are often targets in the environmental checking. Identification and quantification of the 16 PAHs components was accomplished using High Performance Liquid Chromatography (HPLC) had a model Shimadzu LC-10 AVP. The total concentratio
... Show MoreThis research presents a study in ultra-desulfurization of diesel fuel produced from conventional hydro desulfurization process, using oxidation and solvent extraction techniques. Dibenzothiophene (DBT) was the organosulfur compound that had been detected in sulfur removal. The oxidation process used hydrogen peroxide as an oxidant and acetic acid as homogeneous catalyst . The solvent extraction process used acetonitrile (ACN) and N-methyl – 2 - pyrrolidone (NMP) as extractants . Also the effect of five parameters (stirring speed :150 , 250 , 350 , and 450) rpm, temperature (30 , 40 , 45 , and 50) oC, oxidant/simulated diesel fuel ratio (0.5 , 0.75 , 1 , and 1.5) , catalyst/oxidant ratio(0.125,0.25,0.5
... Show MoreSAPO-11 is synthesized from silicoaluminophosphate in the presence of di-n-propylamine as a template. The results show that the sample obtained has good crystallinity, 396m2/g BET surface area, and 0.35 cm3/g pore volume. The hydroisomerization activity of (0.25)Pt (1)Zr (0.5)W/SAPO-11 catalyst was determined using n-decane and base oil. All hydroisomerization experiments of n-decane were achieved at a fixed bed plug flow reactor at a temperature range of 200-275°C and LHSV 0.5-2h-1. The results show that the n-decane conversion increases with increasing temperature and decreasing LHSV, the maximum conversion of 66.7 % was achieved at temperature 275°C and LHSV of 0.5 h-1
... Show MoreSAPO-11 is synthesized from silicoaluminophosphate in the presence of di-n-propylamine as a template. The results show that the sample obtained has good crystallinity, 396m2/g BET surface area, and 0.35 cm3/g pore volume. The hydroisomerization activity of (0.25)Pt (1)Zr (0.5)W/SAPO-11 catalyst was determined using n-decane and base oil. All hydroisomerization experiments of n-decane were achieved at a fixed bed plug flow reactor at a temperature range of 200-275°C and LHSV 0.5-2h-1. The results show that the n-decane conversion increases with increasing temperature and decreasing LHSV, the maximum conversion of 66.7 % was achieved at temperature 275°C and LHSV of 0.5 h-1. Meanwhile, the same catalyst was used to improve base oil spec
... Show MoreThis study aimed to extraction of essential oil from peppermint leaves by using hydro distillation methods. In the peppermint oil extraction with hydro distillation method is studied the effect of the extraction temperature to the yield of peppermint oil. Besides it also studied the kinetics during the extraction process. Then, 2nd -order mechanism was adopted in the model of hydro distillation for estimation many parameters such as the initial extraction rate, capacity of extraction and the constant rat of extraction with various temperature. The same model was also used to estimate the activation energy. The results showed a spontaneous process, since the Gibbs free energy had a value negative sign.
Asphaltenes are a solubility class described as a component of crude oil with undesired characteristics. In this study, Sharqy Baghdad heavy oil upgrading was achieved utilizing the solvent deasphalting approach as asphaltenes are insoluble in paraffinic solvents; they may be removed from heavy crude oil by adding N-Hexane as a solvent to create deasphalted oil (DAO)of higher quality. This method is known as Solvent De-asphalting (SDA). Different effects have been assessed for the SDA process, such as solvent to oil ratio (4-16/1 ml/g), the extraction temperature (23 ºC) room temperature and (68 ºC) reflux temperature at (0.5 h mixing time with 400 rpm mixing speed). The best solvent deasphalting results were obtained at room temp
... Show MoreThe extraction of Eucalyptus oil from Iraqi Eucalyptus Camadulensis leaves was studded using water distillation methods. The amount of Eucalyptus oil has been determined in a variety of extraction temperature and agitation speed. The effect of water to Eucalyptus leaves (solvent to solid) ratio and particle size of Eucalyptus leaves has been studied in order to evaluate the amount of Eucalyptus oil. The optimum experimental condition for the Eucalyptus oil extraction was established as follows: 100 C extraction temperature, 200 rpm agitation speed; 0.5 cm leave particle size and 6: 1 ml: g amount of water to eucalyptus leaves Ratio.
The target of this study was to study the natural phytochemical components of the head (capsule) of Cynara scolymus cultivated in Iraq. The head (capsule) of plant was extracted by maceration in70% ethanol for 72 hours, and fractioned by hexane, chloroform and ethyl acetate. Preliminary qualitative phytochemical screening was performed on the ethyl acetate fraction for capsule was revealed the presence of flavonoid and aromatic acids. These were examined by (high -performance liquid chromatography) (HPLC diodarray), (high- performance thin-layer chromatography)(HPTLC).
Flavonoids were isolated by preparative layer chromatography and aromatic acid was isolated by preparative high-
... Show MoreThe new organic reagent 2-[Benzo thiazolyl azo]-4,5-diphenyl imidazole was prepared and used as complexing agent for separation and spectrophotometric determination of Cu2+ ion in some samples include plants, soil, water and human blood serum. Initially determined all factors effect on extraction method and the results show optimum pH was (pHex=9), optimum concentration was 40?g/5mLCu2+ and optimum shaking time was (15min.), as well stoichiometry study appears the complex structure was 1:1 Cu2+: BTADPI. Interferences effect of cations were studied. Synergism effect shows MIBK gave increasing in distribution ratio (D). Organic solvent effect appears there is no any linear relation between dielectric constant for organic solvent used and dis
... Show More