The present work is devoted to investigate the performance of a homemade Y-shape catalytic microreactor for degradation of dibenzothiophene (DBT), as a model of sulphur compounds including in gas oil, utilizing solar incident energy. The microchannel was coated with TiO2 nanoparticles which were used as a photocatalyst. Performance of the microreactor was investigated using different conditions (e.g., DBT concentration, LHSV, operating temperature, and (H2O2/DBT) ratio). Our experiments show that, in the absence of UV light, no reaction takes place. The results revealed that outlet concentration of DBT decreases as the mean residence time in the microreactor increases. Also, it was noted that operating temperature showed a positive impact on the degradation rate of DBT while LHSV showed a different image. The results reported an optimum (H2O2/DBT) ratio which gave maximum conversion of DBT which vary with initial concentration. Kinetic study was carried out which confirmed that desulfurization of DBT followed a pseudo-first order reaction at 30 and 50oC, respectively. However deviation from linearity was observed at 60oC. Comparison between microreactor´s performance and performance of batch reactors from published literature were illustrated. The Comparison confirmed the unique characteristics of the microreactor.
The ability of pulverized walnut-shell to remove oil from aqueous solutions has been studied. It involves two-phase process which consists of using walnut-shell as a filtering bed for the accumulation and adsorption of oil onto its surface. Up to 96% oil removal from synthetic wastewater samples was achieved while tests results showed that 75% of oil can be removed from the actual wastewater discharged from Al- Duara refinery in the south of Baghdad.
Pore pressure means the pressure of the fluid filling the pore space of formations. When pore pressure is higher than hydrostatic pressure, it is named abnormal pore pressure or overpressure. When abnormal pressure occurred leads to many severe problems such as well kick, blowout during the drilling, then, prediction of this pressure is crucially essential to reduce cost and to avoid drilling problems that happened during drilling when this pressure occurred. The purpose of this paper is the determination of pore pressure in all layers, including the three formations (Yamama, Suliay, and Gotnia) in a deep exploration oil well in West Qurna field specifically well no. WQ-15 in the south of Iraq. In this study, a new appro
... Show MoreIn this study, the zinc oxide NPs have been synthesized from the fresh pomegranate peels extract using the precipitation method. The ZnO nanoparticles were produced from the reaction of fresh peels extract with zinc acetate salt which was used as zinc source in the presence of 2 M NaOH. The green synthesized nanoparticles were characterized through X-ray diffraction (XRD), UV-Vis diffuse reflection spectroscopy, Fourier transform infrared spectroscopy (FTIR), and Atomic force microscopy (AFM). The XRD patterns confirm the formation of hexagonal wurtzite phase structure for ZnO synthesized using pomegranate peels extract with average crystalline size of 28 nm. FTIR spectra identify the presence of many active functional groups for the pom
... Show MoreThe modified Hummers method was applied to prepare graphene oxide (GO) from the graphite powder. Tin oxide nanoparticles with different loading (10-20 wt.%) supported on reduced graphene oxide were synthesized to evaluate the oxidative desulfurization efficiency. The catalyst was synthesized by the incipient wetness impregnation (IWI) technique. Different analysis methods like FT-IR, XRD, FESEM, AFM, and Brunauer-Emmett-Teller (BET) were utilized to characterize graphene oxide and catalysts. The XRD analysis showed that the average crystal size of graphene oxide was 6.05 nm. In addition, the FESEM results showed high metal oxide dispersions on the rGO. The EDX analysis shows the weight ratio of Sn is close to its theoretical weight.
... Show MoreDesulfurization of a simulated diesel fuel by different adsorbents was studied in a fixed-bed adsorption process operated at ambient temperature and pressure. Three different adsorption beds were used, commercial activated carbon, Cu-Y zeolite, and layered bed of 15wt% activated carbon followed by Cu-Y zeolite.Initially Y-zeolite was prepared from Iraqi rice husk and then impregnated with copper. In general, the adsorbents tested for total sulfur adsorption capacity at break through followed the order Ac/Cu-Y zeolite>Cu-Y zeolite>Ac. The best adsorbent, Ac/Cu-Y zeolite is capable of producing more than 30 cm3 of simulated diesel fuel per gram of adsorbent with a weighted average content of 5 ppm-S, while Cu-Y zeolite producing of
... Show MorePhotonic Crystal Fiber Interferometers (PCFIs) are widely used for sensing applications. This work presents the fabrication and the characterization of a relative humidity sensor based on a polymer-coated photonic crystal fiber that operates in a Mach- Zehnder Interferometer (MZI) transmission mode. The fabrication of the sensor involved splicing a short (1 cm) length of Photonic Crystal Fiber (PCF) between two single-mode fibers (SMF). It was then coated with a layer of agarose solution. Experimental results showed that a high humidity sensitivity of 29.37 pm/%RH was achieved within a measurement range of 27–95%RH. The sensor also showed good repeatability, small size, measurement accuracy and wide humidity range. The RH sensitivity o
... Show MoreRenewable energy resources have become a promissory alternative to overcome the problems related to atmospheric pollution and limited sources of fossil fuel energy. The technologies in the field of renewable energy are used also to improve the ventilation and cooling in buildings by using the solar chimney and heat exchanger. This study addresses the design, construction and testing of a cooling system by using the above two techniques. The aim was to study the effects of weather conditions on the efficiency of this system which was installed in Baghdad for April and May 2020. The common weather in these months is hot in Baghdad. The test room of the design which has a size of 1 m3 was situated to face the geographical south. The te
... Show MoreThis paper demonstrates the construction designing analysis and control strategies for fully tracking concentrated solar thermal by using programmable logic control in the city of Erbil-Iraq. This work used the parabolic dish as a concentrated solar thermal. At the focal point, the collected form of energy is used for heating a (water) in the receiver, analyzing this prototype in real-time with two different shapes of the receiver and comparing the results. For tracking the parabolic dish, four light-dependent resistors are used to detect the sun's position in the sky so that the tracking system follows it to make the beam radiation perpendicular to the collector surface all of the time during the day for maximum solar p
... Show MoreModeling the microclimate of a greenhouse located in Baghdad under its weather conditions to calculate the heating and cooling loads by computer simulation. Solar collectors with a V-corrugated absorber plate and an auxiliary heat source were used as a heating system. A rotary silica gel desiccant dehumidifier, a sensible heat exchanger, and an evaporative cooler were added to the collectors to form an open-cycle solar assisted desiccant cooling system. A dynamic model was adopted to predict the inside air and the soil surface temperatures of the greenhouse. These temperatures are used to predict the greenhouse heating and cooling loads through an energy balance method which takes into account the soil heat gain. This is not included in
... Show More