Preferred Language
Articles
/
ijcpe-243
Reduction of Sulfur Compounds from Petroleum Fraction Using Oxidation-Adsorption Technique
...Show More Authors

Oxidation of sulfur compounds in fuel followed by an adsorption process were studied using two modes of operation, batch mode and continuous mode (fixed bed). In batch experiment oxidation process of kerosene with sulfur content 2360 ppm was achieved to study the effect of amount of hydrogen peroxide(2.5, 4, 6 and 10) ml at different temperature(40, 60 and 70)°C. Also the effect of amount acetic acid was studied  at the optimal conditions of the oxidation step(4ml H2O2 and 60 °C).Besides, the role of acetic acid different temperatures(40, 60, 70) °C and 4ml H2O2, effect of reaction time(5, 30, 60, 120, 300) minutes at temperatures(40,60) °C, 4ml H2O2 and 1 mlHAC)  and effect of reaction temperature were studied.

   The results showed that the  percentage removal of sulfur compounds increases with the increasing amount of  hydrogen peroxide and amount of acetic acid also the percentage removal of sulfur compounds increases by addition acetic acid, reaction time up to 300 minutes and reaction temperature.

   In the fixed bed adsorption process, the oxidized kerosene having sulfur content being reduced to 939.28 ppm, was let to flow through a bed of 10Ni/ -Al2O3. The results showed that a sulfur removal of   95.38 %  was obtained. By this the total sulfur removal of  98.38 %  was obtained from the two consecutive processes. The resultant fuel had only 43.47 ppm. Also a study of the capability of the same bed to desulfurize raw feed of kerosene of 2360 ppm of sulfur compounds was investigated. 43.3% removal of sulfur compounds was achieved which reflects the catalytic properties of the adsorbent which could act as an oxidative adsorptive material. The results showed that by increasing feed flow rate, the breakthrough curve becomes steeper. Also the maximum removal of sulfur compounds was obtained in the case of  bed height 20 cm and flow rate 0.3 l/h.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Jan 18 2022
Journal Name
Materials Science Forum
The Effect of Gamma Radiation on the Manufactured HgBa<sub>2</sub>Ca<sub>2</sub>Cu<sub>2.4</sub>Ag<sub>0.6</sub>O<sub>8+δ</sub> Compound
...Show More Authors

In this article four samples of HgBa2Ca2Cu2.4Ag0.6O8+δ were prepared and irradiated with different doses of gamma radiation 6, 8 and 10 Mrad. The effects of gamma irradiation on structure of HgBa2Ca2Cu2.4Ag0.6O8+δ samples were characterized using X-ray diffraction. It was concluded that there effect on structure by gamma irradiation. Scherrer, crystallization, and Williamson equations were applied based on the X-ray diffraction diagram and for all gamma doses, to calculate crystal size, strain, and degree of crystallinity. I

... Show More
View Publication
Scopus (2)
Crossref (2)
Scopus Crossref