The performance of a batch undivided electrochemical reactor with a rotating cylinder electrode of woven-wire (60 mesh size), stainless steel 316, is examined for the removal of copper from synthetic solution of o.5 M sodium chloride containing 125 ppm at pH ≈ 3.5. The effect of total applied current, rotation speed on the figures of merit of the reactor is analyzed. For an applied current of 300 mA at 100 rpm, the copper concentration decreased from 125 to mg l-1 after 60 min of electrolysis with a specific energy consumption of 1.75 kWh kg-1 and a normalized space velocity of 1.62 h-1. The change in concentration was higher when the total applied currents were increased because of the turbulence-promoting action of the hydrogen evolution. The results suggest that the applied current must represent a compromise between the increase in space time yield or normalized space velocity and the increase in the specific energy consumption.
In this study, the adsorption of Zn (NO3)2 is carried out by using surfaces of malvaparviflora. The validity of the adsorption is evaluated by using atomic absorption Spectrophotometry through determination the amount of adsorbed Zn (NO3)2. Various parameters such as PH, adsorbent weight and contact time are studied in terms of their effect on the reaction progress. Furthermore, Lagergren’s equation is used to determine adsorption kinetics. It is observed that high removal of Zn (NO3)2 is obtained at PH=2. High removal of Zn (NO3)2 is at the time equivalent of 60 min and reaches equilibrium,where 0.25gm is the best weight of adsorbant . For kinetics the reaction onto malvaparviflora follows pseudo first order Lagergren’s equation.
The current study included testing the ability of plant Hydrilla verticillata (L. F.) on the accumulation of two heavy metals in its tissues, and use the plant in phytoremediation. The plant was exposure to different concentrations of chromium and copper metals (2.5, 5, 10, 15, 20) ppm, for a period of fourteen days, for each solution.The results showed that Hydrilla was more efficient in the removal of chromium, where the amount of the remaining concentration of chromium at the last day of the experiment was (0.20 ± 0.014- 0.66 ± 0.114- 0.99 ± 0.176- 0.79 ± 0.073- 1.80 ± 0.131) ppm, while for copper was (0.33 ± 0.06- 1.13 ± 0.39- 1.66 ± 0.05- 1.96 ± 0.043- 2.33 ± 0.0497) ppm at the last day of the experiment, respectively.
In batch experiments, a natural chitosan adsorbent was employed to extract cobalt ions from industrial wastewater under varied parameters of starting concentration, adsorbent weight, pH, and contact duration. The adsorbent was examined using FTIR, XRD, and AFM. For an initial cobalt ion concentration of 5x10-2 mol/l at pH 6, time 35 minutes, temperature 25 °C, and adsorbing dose 0.1 g, the results showed a maximum removal percentage of 99.0 percent. The Freundlich isotherm and the pseudo-second order kinetic model both suit the experimental data well. According to thermodynamic studies, the process was spontaneous and endothermic.
The biochar prepared from sawdust raw material was applied in this study for the treatment of wastewater polluted with methyl orange dye. The effect of pH (2-11), initial concertation (50-250 mg/L) and time were studied. The isotherm of Langmuir, Frendluch and temkin models studied. The Langmuir model was the best to explain the adsorption process, maximum uptake was 136.67 mg/g at 25Co of methyl orange dye. Equilibrium reached after four hours of contact for most adsorbents.The values of thermodynamic parameters ∆G were negative at various temperatures, so the process spontaneous, while ∆H values were 16683 j/mol and ∆S values was 60.82 j/mol.k.
The research discussed the possibility of adsorption of Brilliant Blue Dye (BBD) from wastewater using 13X zeolite adsorbent, which is considered a byproduct of the production process of potassium carbonate from Iraqi potash raw materials. The 13X zeolite adsorbent was prepared and characterized by X-ray diffraction that showed a clear match with the standard 13X zeolite. The crystallinity rate was 82.15% and the crystal zeolite size was 5.29 nm. The surface area and pore volume of the obtained 13X zeolite were estimated. The prepared 13X zeolite showed the ability to remove BBD contaminant from wastewater at concentrations 5 to 50 ppm and the removal reached 96.60% at the lower pollutant concentration. Adsorption measurements versus tim
... Show MoreMicroalgae have been increasingly used for wastewater treatment due to their capacity to assimilate nutrients. Samples of wastewater were taken from the Erbil wastewater channel near Dhahibha village in northern Iraq. The microalga Coelastrella sp. was used in three doses (0.2, 1, and 2g. l-1) in this experiment for 21 days, samples were periodically (every 3 days) analyzed for physicochemical parameters such as pH, EC, Phosphate, Nitrate, and BOD5, in addition to, Chlorophyll a concentration. Results showed that the highest dose 2g.l-1 was the most effective dose for removing nutrients, confirmed by significant differences (p≤0.05) between all doses. The highest removal percentage was
... Show More