The inhibitive action of a blend of sodium nitrite/sodium hexametaphosphate (SN+SHMP) on corrosion of carbon steel in simulated cooling water systems (CWS) has been investigated by weight loss and electrochemical polarization technique. The effect of temperature, velocity, and salts concentrations on corrosion of carbon steel were studied in the absence and presence of mixed inhibiting blend. Also the effect of inhibitors blend concentrations (SN+SHMP), temperatures, and rotational velocity, i.e., Reynolds number (Re) on corrosion rate of carbon steel were investigated using Second-order Rotatable Design (Box-Wilson Design) in performing weight loss and corrosion potential approach. Electrochemical polarization measurements were used to study the behavior of carbon steel in different salts concentrations of (CWS) with pH = 7.5 in absence and presence of the inhibiting blend. The results show that the regression model (Box-Wilson Design) that has been developed using experimental data was used to verify that the interaction term of temperature with inhibitors blend and the square term of inhibitors blend are significant for corrosion rate in 0.05 N NaCl solution while the main variables are not pronounced. Also, it is found that the corrosion rate of carbon steel is increased with increasing temperature, rotational velocity, and NaCl salts concentration in uninhibited and inhibited solutions. Inhibition performance of NaNO2+ Na(PO3)6 was found to increase with its concentration up to 800 ppm inhibitors blend, and the corrosion potential is shifted to more positive direction with increasing rotational velocity, and inhibitor blend concentration.
To evaluate and improve the efficiency of photovoltaic solar modules connected with linear pipes for water supply, a three-dimensional numerical simulation is created and simulated via commercial software (Ansys-Fluent). The optimization utilizes the principles of the 1st and 2nd laws of thermodynamics by employing the Response Surface Method (RSM). Various design parameters, including the coolant inlet velocity, tube diameter, panel dimensions, and solar radiation intensity, are systematically varied to investigate their impacts on energetic and exergitic efficiencies and destroyed exergy. The relationship between the design parameters and the system responses is validated through the development of a predictive model. Both single and mult
... Show MoreIn this work, the photodetection performance of polyvinyl alcohol (PVA) nanofibers and its composite with yttrium oxide (Y2O3) at different concentrations (2.5, 5, 10) wt% are examined deposited on p-type Si with (111) orientation. Electrospinning technique was used to create nanofiber composites. Adding Y2O3 significantly impacts the PVA nanofibers where ultraviolet-visible (UV-Vis) spectroscopy optical absorption energy gap decreases with increased concentration (2.8, 2.6, and 2.3) eV. X-ray diffraction was used to investigate crystal structure, which is cubic structure. The chemical composition study was conducted using Fourier transform infrared spectroscopy (FTIR) spectra, which revealed the stretching vibrations related to the Y-O bon
... Show MoreA submerged weir is a hydraulic structure utilized to control flow in canals and rivers. Water scarcity is a persistent issue in Iraq, especially during the dry season when irrigation withdrawals reduce downstream water levels in canals (Water is lost from irrigation canals due to seepage, evaporation, and vegetation growth). The final section of the Bani Hassan Canal experiences significant drops in water surface (WS) levels, negatively impacting irrigation efficiency. This study addresses that gap by investigating the use of submerged weirs to enhance water distribution and raise WS in the final 6 km segment of the canal. A one-dimensional (1D) hydraulic mode
Been in this gravel study the effect of Alchgag fast neutrons emitted by the source on the electrical properties of silicon solar cells monounsaturated crystal at a constant rate of neutron flow rate of a wide range of neutron flow speed ranges for periods of time ranging from 2-10 hours
Abstract
This current research aims to make theoretical frame for the thoughts and principle knowledge for high performance work system ،also trying to know the role that high performance work system practices which is (Effective staffing، comprehensive training، providing work career، and employee participation) play to enhance the organization effectiveness ، although knowing the principles of high performance work system which is: (Shared Information، Knowledge Development Performance and Reward linkage Egalitarianism)and its effect on the organizations. As well as defining the special concept of High performance wo
... Show More