The present work aims to study the treatment of oily wastewater by means of forward osmosis membrane bioreactor process. Side stream (external) configuration and submerged (internal) configuration of osmotic membrane bioreactor were performed and investigated. The experimental work for each configuration was carried out continuously over 21 days. The flux behavior of forward osmosis membrane in an osmotic membrane bioreactor (OMBR) was investigated, using NaCl as the draw solution and CTA as FO membrane. The effect of mixed liquor suspended solids (MLSS) concentration and TDS accumulation of bioreactor on water flux and membrane fouling behaviors was detected. The accumulation and rejection of nutrients in the bioreactor (Nitrate, COD, and Phosphate) were investigated over the days of the experiment. Water flux and membrane fouling were not significantly affected by MLSS concentration at low level and this effect increase with increasing MLSS concentration (4000–10000 mg/L). Besides, water flux was severely affected by elevated salinity of the aeration tank. OMBR showed high removal of COD (96%) and FO membrane revealed high retention of phosphate (97%) but retention for nitrate was relatively low (72%). The sparingly soluble salts in the influent, bioreactor, draw solution, and RO effluent were detected through the experiment. The results showed flux decline with time to about 47% from the initial flux and two osmotic backwashing were applied at day 7 and 14 during the operation and the flux restored approximately 30% of its loss. Side stream and submerged configurations revealed nearly similar response over the experiments while side stream module showed better water flux (7.0 LMH) than submerged (6.1 LMH). The results showed that the concentration of inorganic ions is below the limits that may cause severe scaling.
Volumetric Modulated Arc Therapy (VMAT) and Intensity Modulated Radiation Therapy (IMRT) are comparable for nasopharyngeal cancerous radiation therapy. This research intends to analyze the high-quality plan using accomplishment, conformance, and homogeneity criteria.
The study involved 40 patients with a postnasal cancerous tumor. The patients underwent computed tomography (CT) simulation to scan the anatomical details of the patients' heads. Then, their data was forwarded to the treatment planning system (TPS) workstation for IMRT and VMAT planning. The plans were evaluated using the IOA, HI, and CI indices.
The nasopharynx coverage results consist of the GTV and PTV at 95%. The statistical study reveals that VMAT provides
... Show MoreThis work aimed to study the effect of laser surface treatment on the mechanical characteristics and corrosion behaviour of grey cast iron type A159. Many technical applications used conventional surface treatment, but laser surface hardening has recently been used to enhance the surface properties of many alloys. The mechanical characteristics, including microstructure, microhardness, and wear resistance of A159 grey cast iron, were studied, in addition to corrosion behaviour. The experimental laser parameters in this work were 0.9, 1.2, and 1.5 KW power with continuous wave carbon dioxide lasers with scanning speeds of 10 and 12 mm/s were used. The results found that phase-transitional alterations in microstructure were influenced by lase
... Show MoreAfter diagnostic tests on ten isolates of S. marcescence, were made an examination of sensitivity to various antibiotics and checking the ability to produce β-lactamase of all isolates. The outer membrane protein quantity was determined in μg/cm3 for all isolates. The results showed that S. marcescence have antibiotic multiresistant and all isolates had the ability to produce β-lactamase and its resistance may arise from more than two mechanisms like overproduction of antibiotic inactivation enzymes and the decrease of permeability by outer membrane protein.
Hazardous materials, heavy metals, and organic toxins released into the environment have caused considerable harm to microbes, plants, animals, and humans. Wastewater is one of the most contaminated ecosystems due to heavy metals emitted mostly by human activity. Bioremediation of wastewater is an ecologically acceptable and cost-effective method of removing heavy metals from sewage; the general purpose of this study is to analyse the dependability of anaerobic sludge biomass in removing sulfur compounds and heavy metals from waste water. The anaerobic sludge biomass evaluated in this work was taken from a wastewater treatment plant (WWTP) in Al-Rustumiya, Baghdad, and grown in the mineral medium for anaerobic growth. In serum bottl
... Show MoreIn this research, the efficiency of low-cost unmodified wool fibers were used to remove zinc ion from industrial wastewater. Removal of zinc ion was achieved at 99.52% by using simple wool column. The experiment was carried out under varying conditions of (2h) contact time, metal ion concentration (50mg/l), wool fibers quantity to treated water (70g/l), pH(7) & acid concentration (0.05M). The aim of this method is to use a high sensitive, available & cheep natural material which applied successfully for industrial wastewater& synthetic water, where zinc ion concentration was reduced from (14.6mg/l) to (0.07mg/l) & consequently the hazardous effect of contamination was minimized.
Bioremoval of chromium from wastewater of tannery factory in Iraq was studied. The bacteria Proteus vulgaris 7E showed an enhanced capability in biosorping chromium when its concentration increased in the solution, reaching a maximum of 476,7 mg/ ml out of 492 mg/ ml under optimum conditions at pH 6 and 50°C at one hour contact time and biomass of 1 mg/ml. The present results showed that dead cells of P. vulgaris 7E biosorbed 87.41 mg/ml of chromium in comparison with91.18 mg/ml of chromium biosorbed by living cells, this indicates the insignificant effect of physiological state of cells. It was found that the above biosorption is physico-chemical process depends upon electrostatic attraction forces. The results has illustrated that the
... Show MoreIn the present work, the pollutants of the municipal wastewater are reduced using Chlorella vulgaris microalgae. The pollutants that were treated are: Total organic carbon (TOC), Chemical oxygen demand (COD), Nitrate (NO3), and Phosphate (PO4). Firstly, the treatment was achieved at atmospheric conditions (Temperature = 25oC), pH 7 with time (1 – 48 h). To study the effect of other microorganisms on the reduction of pollutants, sterilized wastewater and unsterilized wastewater were used for two types of packing (cylindrical plastic and cubic polystyrene) as well as algae's broth (without packing), where the microalgae are grown on the packing then transported to the wastewater for treatment. Th
... Show MoreBackground: human paillomavirus infections (genital warts) are the most frequent sexually transmitted viral infections. a wide range of treatment options is available with different efficacy.
Objective: To evaluate the efficacy of podophyllin, trichloracetic acid (TCA) in the treatment of genital warts and side effects of them.
Subjects and methods: a total of sixty patients with genital warts were randomly selected, 30 in each group, in the Department of Dermatology, medical city for a Duration of 11 months from January 2009 to December 2009 treated with 35 % podophyllin in the tincture of benzoin or 50% TCA) .Forty-eight patients were followed up for three months.
Results: wart
... Show More