The present work aims to study the treatment of oily wastewater by means of forward osmosis membrane bioreactor process. Side stream (external) configuration and submerged (internal) configuration of osmotic membrane bioreactor were performed and investigated. The experimental work for each configuration was carried out continuously over 21 days. The flux behavior of forward osmosis membrane in an osmotic membrane bioreactor (OMBR) was investigated, using NaCl as the draw solution and CTA as FO membrane. The effect of mixed liquor suspended solids (MLSS) concentration and TDS accumulation of bioreactor on water flux and membrane fouling behaviors was detected. The accumulation and rejection of nutrients in the bioreactor (Nitrate, COD, and Phosphate) were investigated over the days of the experiment. Water flux and membrane fouling were not significantly affected by MLSS concentration at low level and this effect increase with increasing MLSS concentration (4000–10000 mg/L). Besides, water flux was severely affected by elevated salinity of the aeration tank. OMBR showed high removal of COD (96%) and FO membrane revealed high retention of phosphate (97%) but retention for nitrate was relatively low (72%). The sparingly soluble salts in the influent, bioreactor, draw solution, and RO effluent were detected through the experiment. The results showed flux decline with time to about 47% from the initial flux and two osmotic backwashing were applied at day 7 and 14 during the operation and the flux restored approximately 30% of its loss. Side stream and submerged configurations revealed nearly similar response over the experiments while side stream module showed better water flux (7.0 LMH) than submerged (6.1 LMH). The results showed that the concentration of inorganic ions is below the limits that may cause severe scaling.
The most significant water supply, which is the basis of agriculture, industry and human and wildlife needs, is the river. In order to determine its suitability for drinking purposes, this study aims to measure the Water Quality Index (WQI) of the Tigris River in the Salah Al-Din Province (center of Tikrit), north of Baghdad. For ten (9) physio-chemical parameters, namely turbidity, total suspended sediments, PH, electrical conductivity, total dissolved solids, alkalinity, chloride, nitrogen as nitrate, sulphate, and then transported for examination to the laboratory, water samples were collected from 13 locations along the Tigris river. Using the weighted arithmetic index method, the WQI was measured and found to be 105,87 in up-stream, wh
... Show Moren this paper, we formulate three mathematical models using spline functions, such as linear, quadratic and cubic functions to approximate the mathematical model for incoming water to some dams. We will implement this model on dams of both rivers; dams on the Tigris are Mosul and Amara while dams on the Euphrates are Hadetha and Al-Hindya.
The research explain the analysis of finance investments through analyze the finance tables for commercial banks, by using the pointers to indicate the limits of economical benefit for these investments, and fix the negative deviations and as well positive, for the purpose of diagnostic the negative (disadvantage) and develop the advantage deviation, For the importance of finance investments in the development operation and economical growth, further to that the finance investments is represent one of the most activities in the commercial banks in which aim the adequate incomes as a result of the commercial banks act to receipt the banks deposits and then make it growth and develop through commercial advantage o
... Show MoreThe designer must find the optimum match between the object's technical and economic needs and the performance and production requirements of the various material options when choosing material for an engineering application. This study proposes an integrated (hybrid) strategy for selecting the optimal material for an engineering design depending on design requirements. The primary objective is to determine the best candidate material for the drone wings based on Ashby's performance indices and then rank the result using a grey relational technique with the entropy weight method. Aluminum alloys, titanium alloys, composites, and wood have been suggested as suitable materials for manufacturing drone wings. The requirement
... Show MoreBiosorption of lead, chromium, and cadmium ions from aqueous solution by dead anaerobic biomass (DAB) was studied in single, binary, and ternary systems with initial concentration of 50 mg/l. The metal-DAB affinity was the same for all systems. The main biosorption mechanisms were complexation and physical adsorption of metallic cations onto natural active functional groups on the cell wall matrix of the DAB. It was found that biosorption of the metallic cations onto DAB cell wall component was a surface process. The main functional groups involved in the metallic cation biosorption were apparently carboxyl, amino, hydroxyle, sulfhydryl, and sulfonate. These groups were part of the DAB cell wall structural polymers. Hydroxyle groups (–O
... Show MoreThis study depicts the removal of Manganese ions (Mn2+) from simulated wastewater by combined electrocoagulation/ electroflotation technologies. The effects of initial Mn concentration, current density (C.D.), electrolysis time, and different mesh numbers of stainless steel screen electrodes were investigated in a batch cell by adopting Taguchi experimental design to explore the optimum conditions for maximum removal efficiency of Mn. The results of multiple regression and signal to noise ratio (S/N) showed that the optimum conditions were Mn initial concentration of 100 ppm, C.D. of 4 mA/cm2, time of 120 min, and mesh no. of 30 (wire/inch). Also, the relative significance of each factor was attained by the analysis
... Show MoreThis study depicts the removal of Manganese ions (Mn2+) from simulated wastewater by combined electrocoagulation/ electroflotation technologies. The effects of initial Mn concentration, current density (C.D.), electrolysis time, and different mesh numbers of stainless steel screen electrodes were investigated in a batch cell by adopting Taguchi experimental design to explore the optimum conditions for maximum removal efficiency of Mn. The results of multiple regression and signal to noise ratio (S/N) showed that the optimum conditions were Mn initial concentration of 100 ppm, C.D. of 4 mA/cm2, time of 120 min, and mesh no. of 30 (wire/inch). Also, the relative significance of each factor was attained by the analysis of variance (ANO
... Show More