Indirect electrochemical oxidation of phenol and its derivatives was investigated by using MnO2 rotating cylinder electrode. Taguchi experimental design method was employed to find the best conditions for the removal efficiency of phenol and its derivatives generated during the process. Two main parameters were investigated, current density (C.D.) and electrolysis time. The removal efficiency was considered as a response for the phenol and other organics removal. An orthogonal array L16, the signal to noise (S/N) ratio, and the analysis of variance were used to test the effect of designated process factors and their levels on the performance of phenol and other organics removal efficiency. The results showed that the current density has the higher influence on performance of organics removal while the electrolysis time has the lower impact on the removal performance. Multiple regressions was utilized to acquire the equation that describes the process and the predicted equation has a correlation coefficient (R2) equal to 98.77%. The best conditions were found to get higher removal efficiency. Removal efficiency higher than 95% can be obtained in the range of C.D. of 96-100 mA/cm2 and electrolysis time of 3.2 to 5 h. The behavior of the chemical oxygen demand (COD) mineralization denotes to a zero order reaction and the rate of reaction controlled by active chlorine reaction not by mass transfer of phenol towards the anode.
ST Alawi, NA Mustafa, Al-Mustansiriyah Journal of Science, 2013
Combining different treatment strategies successively or simultaneously has become recommended to achieve high purification standards for the treated discharged water. The current work focused on combining electrocoagulation, ion-exchange, and ultrasonication treatment approaches for the simultaneous removal of copper, nickel, and zinc ions from water. The removal of the three studied ions was significantly enhanced by increasing the power density (4–10 mA/cm2) and NaCl salt concentration (0.5–1.5 g/L) at a natural solution pH. The simultaneous removal of these metal ions at 4 mA/cm2 and 1 g NaCl/L was highly improved by introducing 1 g/L of mordenite zeolite as an ion-exchanger. A remarkable removal of heavy metals was reported
... Show MoreCombining different treatment strategies successively or simultaneously has become recommended to achieve high purification standards for the treated discharged water. The current work focused on combining electrocoagulation, ion-exchange, and ultrasonication treatment approaches for the simultaneous removal of copper, nickel, and zinc ions from water. The removal of the three studied ions was significantly enhanced by increasing the power density (4–10 mA/cm2) and NaCl salt concentration (0.5–1.5 g/L) at a natural solution pH. The simultaneous removal of these metal ions at 4 mA/cm2 and 1 g NaCl/L was highly improved by introducing 1 g/L of mordenite zeolite as an ion-exchanger. A remarkable removal of heavy metals was reported
... Show More This study includes Estimating scale parameter, location parameter and reliability function for Extreme Value (EXV) distribution by two methods, namely: -
- Maximum Likelihood Method (MLE).
- Probability Weighted Moments Method (PWM).
Used simulations to generate the required samples to estimate the parameters and reliability function of different sizes(n=10,25,50,100) , and give real values for the parameters are and , replicate the simulation experiments (RP=1000)
... Show MoreThe present study aimed to use the magnetic field and nanotechnology in the field of water purification, which slots offering high efficiency to the possibility of removing biological contaminants such as viruses and bacteria rather than the use of chemical and physical transactions such as chlorine and bromine, and ultraviolet light and boiling and sedimentation and distillation, ozone and others that have a direct negative impact on human safety and the environment. Where they were investigating the presence in water samples under study Coli phages using Single agar layer method and then treated samples positive for phages to three types of magnetic field fixed as follows (North Pole - South Pole - Bipolar) and compare the re
... Show MoreSoil that has been contaminated by heavy metals is a serious environmental problem. A different approach for forecasting a variety of soil physical parameters is reflected spectroscopy is a low-cost, quick, and repeatable analytical method. The objectives of this paper are to predict heavy metal (Ti, Cr, Sr, Fe, Zn, Cu and Pb) soil contamination in central and southern Iraq using spectroscopy data. An XRF was used to quantify the levels of heavy metals in a total of 53 soil samples from Baghdad and ThiQar, and a spectrogram was used to examine how well spectral data might predict the presence of heavy metals metals. The partial least squares regression PLSR models performed well in pr
Polyaniline organic Semiconductor polymer was prepared by oxidation polymerization by adding hydrochloric acid concentration of 0.1M and potassium per sulfate concentration of 0.2M to 0.1M of aniline at room temperature, the polymer was deposited at glass substrate, the structural and optical properties were studies through UV-VIS, IR, XRD measurements, films have been operated as a sensor of vapor H2SO4 and HCl acids.
In the present work, a kinetic study was performed to the extraction of phosphate from Iraqi Akashat phosphate ore using organic acid. Leaching was studied using lactic acid for the separation of calcareous materials (mainly calcite). Reaction conditions were 2% by weight acid concentration and 5ml/gm of acid volume to ore weight ratio. Reaction time was taken in the range 2 to 30 minutes (step 2 minutes) to determine the reaction rate constant k based on the change in calcite concentration. To determine value of activation energy when reaction temperature is varied from 25 to 65 , another investigation was accomplished. Through the kinetic data, it was found that selective leaching was controlled by surface chemical reactio
... Show MoreTo obtain the approximate solution to Riccati matrix differential equations, a new variational iteration approach was proposed, which is suggested to improve the accuracy and increase the convergence rate of the approximate solutons to the exact solution. This technique was found to give very accurate results in a few number of iterations. In this paper, the modified approaches were derived to give modified solutions of proposed and used and the convergence analysis to the exact solution of the derived sequence of approximate solutions is also stated and proved. Two examples were also solved, which shows the reliability and applicability of the proposed approach.