Preferred Language
Articles
/
ijcpe-230
Study of the Performance of Paraffin Wax as a Phase Change Material in Packed Bed Thermal Energy Storage System

The present work deals with an experimental investigation of charging and discharging processes in thermal storage system using a phase change material PCM. Paraffin wax was used as the PCM which is formed in spherical capsules and packed in a cylindrical packed column which acted as an energy storage system. Air was used as the heat transfer fluid HTF in thermal storage unit. The effect of flow rate and inlet temperature of HTF on the time of charging and discharging process were studied. The results showed that the faster storage of thermal energy can be made by high flow rate of heat transfer fluid HTF and high inlet temperature of heat transfer fluid. It was found that at 65°C HTF inlet temperature, the melting and solidification processes accelerated by 27.9% and 57.14% respectively, when the flow rate was increased from 9 to 24 L/s. Also, when the HTF inlet temperature changed from 65°C to 80°C, the time needed to complete melting process decreased by 38.8%.

View Publication
Publication Date
Thu Sep 01 2016
Journal Name
Applied Thermal Engineering
Crossref (141)
Crossref
Publication Date
Thu Sep 01 2016
Journal Name
Applied Thermal Engineering
Scopus (143)
Crossref (141)
Scopus Clarivate Crossref
View Publication
Publication Date
Mon Oct 12 2020
Journal Name
Molecules
Phase Change Process in a Zigzag Plate Latent Heat Storage System during Melting and Solidification

Applying a well-performing heat exchanger is an efficient way to fortify the relatively low thermal response of phase-change materials (PCMs), which have broad application prospects in the fields of thermal management and energy storage. In this study, an improved PCM melting and solidification in corrugated (zigzag) plate heat exchanger are numerically examined compared with smooth (flat) plate heat exchanger in both horizontal and vertical positions. The effects of the channel width (0.5 W, W, and 2 W) and the airflow temperature (318 K, 323 K, and 328 K) are exclusively studied and reported. The results reveal the much better performance of the horizontal corrugated configuration compared with the smooth channel during both melti

... Show More
Scopus (32)
Crossref (30)
Scopus Clarivate Crossref
View Publication
Publication Date
Thu Sep 30 2004
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
View Publication Preview PDF
Publication Date
Sun Dec 17 2017
Journal Name
Al-khwarizmi Engineering Journal
Experimental Study Using the Passive Solar Chimney for Evaporative Cooling With PCM and CFM as a Thermal Energy Storage

 

      In this work, a test room was built in Baghdad city, with (2*1.5*1.5) m3  in dimensions, while the solar chimneys (SC) were designed with aspect ratio (ar) bigger than 12. Test room was supplied by many solar collectors; vertical single side of air pass with ar equals 25, and tilted 45o double side of air passes with ar equals 50 for each pass, both collectors consist of flat thermal energy storage box collector (TESB) that covered by transparent clear acrylic sheet, third type of collector is array of evacuated tubular collectors with thermosyphon in 45o instelled  in the bottom of TESB of vertical SC. The TESB was

... Show More
View Publication Preview PDF
Publication Date
Wed Jan 01 2020
Journal Name
Energy Conversion And Management
Scopus (116)
Crossref (109)
Scopus Clarivate Crossref
View Publication
Publication Date
Thu Jan 31 2019
Journal Name
Journal Of Engineering
Experimental Study on Double-Pass Solar Air Heater with and without using Phase Change Material

In this paper, an experimental study was conducted to enhance the thermal performance of a double-pass solar air heater (SAH) using phase change material (PCM) for thermal storage at climatic conditions of Baghdad city - Iraq. The double-pass solar air heater integrated with thermal storage system was manufactured and tested to ensure that the air heating reserved after the absence of the sun. The rectangular cavity filled with paraffin wax was used as a latent heat storage and incorporated into the lower channel of solar air heater. Experiments were carried out to evaluate the charging and discharging characteristics of two similar designed solar air collectors with and without using phase change material at a constant

... Show More
Crossref (20)
Crossref
View Publication Preview PDF
Publication Date
Wed Jun 01 2022
Journal Name
Applied Energy
View Publication
Publication Date
Wed Jun 01 2022
Journal Name
Applied Energy
Scopus (31)
Crossref (22)
Scopus Clarivate Crossref
Publication Date
Mon May 08 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
A New Method For Preparation of Microencapsulated Phase Change Materials (PCMs) For Low Coast Energy in Cooling of Building

Microencapsulated of paraffin wax which acts as core material of phase change
material covered by polymer was prepared by using rabid (physical-chemical) with lower
energy (green) method. Prepolymer of condensed Melamine-Formaldehyde resin, was
solidified by heat effect gradually and surrounds the Paraffin wax as microcapsules. The
diameter of the prepared capsules was about (170-220) micron which has a proportion with
the prepolymer temperature, otherwise the thermal analysis appears as a best value of
enthalpy (ΔH) which was (12 J/gm) when the prepolymer temperature was (60˚C)

View Publication Preview PDF