In the present study waste aluminium cans were recycled and converted to produce alumina catalyst. These cans contain more than 98% aluminum oxide in their structure and were successfully synthesized to produce nano sized gamma alumina under mild conditions. A comprehensive study was carried out in order to examine the effect of several important parameters on maximum yield of alumina that can be produced. These parameters were reactants mole ratios (1.5, 1.5, 2, 3, 4 and 5), sodium hydroxide concentrations (10, 20, 30, 40, 50 and 55%) and weights of aluminum cans (2, 4, 6, 8 and 10 g). The compositions of alumina solution were determined by Atomic absorption spectroscopy (AAS); and maximum yield of alumina solution was 96.3% obtained at 2 mole ratios of reactants, 40% sodium hydroxide concentrations and 10g of aluminum cans respectively. Gamma alumina was acquired by hydrothermal treatment of alumina solution at pH 7 and calcination temperature of 550 ºC. The prepared catalyst was characterized by X-ray diffraction (XRD), N2 adsorption/ desorption isotherms, X-ray fluorescence (XRF) and atomic force microscopy (AFM). Results showed good crystallinity of alumina as described by XRD patterns, with surface area of 311.149 m2/g, 0.36 cm3/g pore volume, 5.248 nm pore size and particle size of 68.56 nm respectively.
Increase in unconventional resources of calcium (Ca+2) for fowls, aquaculture and native animals was improved. This work was planned to define the most polymorph of calcium carbonate (CaCO3) that take place in the two types of chicken eggshells (local and imported type). In this research, the comparative analysis of calcium carbonate (CaCO3) content was approved for nominated eggshells of native strain and imported chicken via Field Emission Scanning Electron Microscope (FESEM), Transmission Electron Microscope (TEM), Fourier-Transform Infrared Spectroscopy (FTIR) and Powder X-Ray Diffraction (PXRD) analysis. The results demonstrate that native and imported chicken eggshells comprise calcite morph that ha
... Show MoreA new series of morpholine derivative were prepared by reacting the morpholine with ethyl chloro acetate in the presence triethylamine as an catalyst and benzene as a solvent gave the ethyl morpholin-4-ylacetate reaction with hydrazine hydrate and ethanol as a solvent gave the 2-(morpholin-4-yl)acetohydrazide gave series of Schiff base were prepared by reacting 2-(morpholin-4- yl)acetohydrazide with different aromatic aldehydes and ketons . The new series of (3-9 )were synthesis by reaction of Schiff base (10-14) with chloroacetyl chloride, triethyl amine as an catalyst and 1,4dioxane as a solvent .The chemical structures of the synthesis compound were identified by spectral methods their [ IR ,1H-NMR and 13C-NMR ].The synthesised compoun
... Show MoreMany new heterocyclic compounds including 4-thiazolidinones containing indole with triazole units were described. The new Schiff bases [VII] a, b and [VIII] a, b synthesized by condensation acid hydrazides [II],[VI] with different (aromatic) aldehydes in absolute ethanol. The refluxing equimolar amounts of the Schiff bases ([VII] a, b,[VIII] a, b) with thioglycolic acid in benzene led to get thiazolidin-4-ones derivatives ([IX] a, b and [X] ad). Finally, the new derivatives [XI] ac run out via the reacted compound [IX] a with different n-alkyl bromide (methyl bromide, ethyl bromide, and butyl bromide)
The physical and morphological characteristics of porous silicon (PS) synthesized via gas sensor was assessed by electrochemical etching for a Si wafer in diluted HF acid in water (1:4) at different etching times and different currents. The morphology for PS wafers by AFM show that the average pore diameter varies from 48.63 to 72.54 nm with increasing etching time from 5 to 15min and from 72.54 to 51.37nm with increasing current from 10 to 30 mA. From the study, it was found that the gas sensitivity of In2O3: CdO semiconductor, against NO2 gas, directly correlated to the nanoparticles size, and its sensitivity increases with increasing operating temperature.
Two arylenedisuccinamic acids, namely 1,4-phenylene-disuccinamic acid and 4,4'biphenyl-disuccinamic acid were prepared from the reaction of two moles of succinic anhydride with one mole of 1,4-phenylenediamine dihydrochloride and beinzidine respectively.Dehydration of arylenedisuccinamic acid in the pressence of polyvinyl alcohol (PVA) and catalytic amount of concentrated.H2SO4,gives N,N'-arylenedisuccinimidesPVAcomposite polymers. Dehydration of arylenedisuccinamic acid (without PVA) in the pressence of catalytic amount of conc. H2SO4 gives N,N'-arylenedisuccinimides. Arylenedisuccinamic acid and arylenedisuccinimides characterized by CHN-analysis,FT.IR and 1H,C13-NMR.Spectral analysis
Ibuprofen is one of the most important members of NSAIDs, named aryl propionic acid derivative. Isatin (1H-indole-2,3-dione) is an important molecule of heterocyclic compounds that have many biological activities. This work illustrates the synthesis of new ibuprofen-isatin derivatives by connecting ibuprofen hydrazide with different isatin derivatives by a condensation reaction, followed by characterization by fourier-transform infrared spectroscopy (FTIR) and proton nuclear magnetic resonance (1H-NMR) spectroscopy. The anti-inflammatory activity was evaluated by using the egg-white induce edema method for all the synthesized compounds (5-8), the compounds 5 and 6 showed better anti-inflammatory activity than ibuprofen as a standard
... Show MoreThree new hydrazone derivatives of Etodolac were synthesized and evaluated for their anti-inflammatory activity by using egg white induced paw edema method. All the synthesized target compounds were characterized by CHN- microanalysis, FT-IR spectroscopy, and 1HNMR analysis. The synthesis of the target (P1-P3) compounds was accomplished following multistep reaction procedures. The synthesized target compounds were found to be active in reducing paw edema thickness and their anti-inflammatory effect was comparable to that of the standard (Etodolac).
In this paper, some chalcone derivatives (C1, C2) were synthesized based on the reaction of equal amount of substituted acetophenone and substituted banzaldehyde in basic medium. Oxazine and thiazine derivatives were prepared from the reaction of chalcones (C1-C2) with urea and thiourea respectively in a basic medium. Pyrazole derivatives were prepared based on the reaction of chalcones with hydrazine mono hydrate or phenyl hydrazine in the presence of glacial acetic acid as a catalyst. The new synthesized compounds were identified using various physical techniques like1 H-NMR and FT-IR spectra.