Thermal pyrolysis kinetics of virgin high-density polyethylene (HDPE) was investigated. Thermal pyrolysis of HDPE was performed using a thermogravimetric analyzer in nitrogen atmosphere under non-isothermal conditions at different heating rates 4, 7, 10 °C/min. First-order decomposition reaction was assumed, and for the kinetic analysis Kissinger-Akahira-Sunose(KAS), Flynn-Wall-Ozawa(FWO) and Coats and Redfern(CR) method were used. The obtained values of average activation energy by the KAS and FWO methods were equal to137.43 and 141.52 kJ/mol respectively, these values were considered in good agreement, where the average activation energy value obtained by CR equation methods was slightly different which equal to 153.16 kJ/mol.
Critical buckling temperature of laminated plate under thermal load varied linearly along the thickness, is developed using a higher-order shape function which depends on a parameter ‘‘m’’, which is improved to obtain results for thin and thick plates. Laminated plates’ equations of motion are obtained using virtual work principle and solved for simply supported boundary conditions. Angle and cross laminates thermal buckled mode shapes with different E1/E2 proportion, number of plies, (α2/α1) proportion, aspect ratios, are investigated. It is observed that this shape function gives thermal buckling for thin and thick plates but with m = 0.05 that agree well with other theories and linear distribution of temperature giv
... Show MoreThermal properties of soils are important in buried structures contact problems. Although laboratory is distinctly advantageous in measuring the thermal conductivity of soil under ideal condition, given the ability to simulate relatively large-scale in place of soil bed, the field thermal conductivity of soil is not yet commonly used in many types of research. The use of only a laboratory experiment to estimate thermal conductivity may be the key reason for overestimation or underestimation it. In this paper, an intensive site investigation including field thermal conductivity tests for six different subsoil strata were performed using a thermal probe method (TLS-100) to systematically understanding the effects of field dry density, water c
... Show MoreTo evaluate the bioactivity and the cytocompatibility of experimental Bioglass-reinforced polyethylene-based root-canal filling materials. The thermal properties of the experimental materials were also evaluated using differential scanning calorimetry, while their radiopacity was assessed using a grey-scale value (GSV) aluminium step wedge and a phosphor plate digital system. Bioglass 45S5 (BAG), polyethylene and Strontium oxide (SrO) were used to create tailored composite fibres. The filler distribution within the composites was assessed using SEM, while their bioactivity was evaluated through infrared spectroscopy (FTIR) after storage in simulated body fluid (SBF). The radiopacity of the composite fibres and their thermal properties were
... Show MoreThe thermal properties (thermal transfer and thermal expansion coefficient) of the enhanced epoxy resin (MWCNT / x-TiO2) were studied by weight ratios with the values (0%, 3%, 5%, 7% and 10%) and a constant ratio of 3% of MWCNT. The ultrasonic technology was used to prepare the neat and composites which were then poured into Teflon molds according to standard conditions. Thermo-analyzer sensor technology was used to measure thermal transfer (thermal conductivity, thermal flow, thermal diffusion, thermal energy and heat resistance). The thermal conductivity, flow, and thermal conductivity values were increased sequentially by increasing the weight ratio of the filler while the results of stored energy values an
... Show MoreIn this paper the effect of thermal annealing on the structural and optical properties of Antimony Selenide (Sb2Se3) is investigated. Sb2Se3 powder is evaporated on clean amorphous glass substrates at room temperature under high vacuum pressure (4.5×10-6 mbar) to form thin films. The structural investigation was done with the aid of X-ray diffraction (XRD) and atomic force microscopy (AFM). The amorphous to polycrystalline transformation of these thin films was shown by X-ray diffraction analysis after thermal annealing. These films' morphology is explained. (UV-Vis ) spectra in ranges from 300 to 1100 nm was used to examine the optical properties of the films .The absorption coefficient and optical energy gap of the investigated films are
... Show MoreRadial density distribution function of one particle D(r1) was calculated for main orbital of carbon atom and carbon like ions (N+ and B- ) by using the Partitioning technique .The results presented for K and L shells for the Carbon atom and negative ion of Boron and positive ion for nitrogen ion . We observed that as atomic number increases the probability of existence of electrons near the nucleus increases and the maximum of the location r1 decreases. In this research the Hartree-fock wavefunctions have been computed using Mathcad computer software .
In this study, method for experimentally determining the electron density (ne) and the electron temperature (Te) in the atmospheric Argon plasma jet is used; it is based on optical emission spectroscopy (OES). Boltzmann plot method used to calculate these parameters measured for different values of gas flow rate. The results show that the electron temperature decreasing with the increase of gas flow rate also indicates an increasing in the electron density of plasma jet with increasing of gas flow rate.
During the last quarter century, many changes have taken place in the tanks industry and also in the materials that used in its production، while concrete is the most suitable material where concrete tanks has the benefits of strength, long service life and cost effectiveness. So, it is necessary improvement the
conventional concrete in order to adapt the severe environment requirements and as a result high
performance concrete (HPC) was used. It is not fundamentally different from the concrete used in the past, although it usually contains fly ash, ground granulated blast furnace slag and silica fume, as well as
superplasticizer. So, the content of cementitious material is high and the water/cement ratio is low. In this
stu
One of the most important problems that faces the concrete industry in Iraq is the deterioration due to internal sulfate attack , since it reduces the compressive strength and increases the expansion of concrete. Consequently, the concrete structure may be damage .The effects of total and total effective sulfate contents on high strength concrete (HSC) have been studied in the present study.
The research studied the effect of sulfate content in cement , sand and gravel , as well as comparing the total sulfate content with the total effective SO3 content. Materials used were divided into two groups of SO3 in cement ,three groups of SO3 in sand ,and two groups of SO
... Show More