This investigation deals with the use of orange peel (OP) waste as adsorbent for removal of nitrate (NO3) from simulated wastewater. Orange peel prepared in two conditions dried at 60C° (OPD) and burning at 500 °C (OPB). The effect of pH: 2-10, contact time: 30- 180 min, sorbent weight: 0.5- 3.0 g were considered. The optimal pH value for NO3 adsorption was found to be 2.0 for both adsorbents. The equilibrium data were analyzed using Langmuir and Freundlich isotherm models. Freundlich model was found to fit the equilibrium data very well with high-correlation coefficient (R2). The adsorption kinetics was found to follow pseudo-second-order rate kinetic model, with a good correlation (R2 > 0.95 and 0.94) for the orange peel adsorbent at 500 °C (OPB) and at 60 °C (OPD), respectively. The results showed that the orange peel was found to be an attractive low cost adsorbent for the treatment of wastewater.
Pilot-scale dead end microfiltration membranes were carried out to determine the feasibility of the process for treating the oily wastewater which discharge from some Iraqi factories such as power station of south of Baghdad and the general company of petrochemical industries. Polypropylene membranes (cylindrical shape) with different pore diameters (1 and 5 micron) were used to conduct the study on micromembrane process. The variables studied are oil concentration (100 – 1000 ppm), feed flow rate (20 – 40 l/h), operating temperature (31 – 50°C) and time (0 – 3 h). It was found that the flux increases with increasing feed flow rate, temperature and pore size of membrane, and decreases with increasing oil concentration and operating
... Show MoreIn this work, electrodialysis (ED) has been demonstrated to be appropriate technique for reducing the electrical conductivity of real wastewater from fuel washing unit, which has been previously treated by other electrochemical technology (electrocoagulation and electrooxidation). A five cell electrodialysis stack, with an active membrane area of 60 cm2 per cell was employed. During a batch recirculation mode ED system, the effects of parameters such as electrical potential applied (6-18 V) and flow rate of streams (0.5-1.7 L/min.) on the performance of the total dissolved solids (TDS) separation and specific power consumption (SPC) were studied. The results indicate that the process of ED under potential (15 V) and flow
... Show MoreIn recent decades, there has been increasing interest in wastewater treatment because of its direct impact on the environment and public health. Over time, other forms of treatment have been developed and modified, including extended aeration. This process is included in the suspended growth system. In this paper, a comparative study was conducted between the efficiency of the extended aeration plant and that of the trickling filter plant in removal of BOD and COD. The method of comparison was done by knowing the value of the pollutant before and after the treatment and then extract the removal ratio of each pollutant within each plant. The results showed that the percentage of removal of BOD in the trickling filte
... Show MoreWastewater recycling for non-potable uses has gained significant attention to mitigate the high pressure on freshwater resources. This requires using a sustainable technique to treat natural municipal wastewater as an alternative to conventional methods, especially in arid and semi-arid rural areas. One of the promising techniques applied to satisfy the objective of wastewater reuse is the constructed wetlands (CWs) which have been used extensively in most countries worldwide through the last decades. The present study introduces a significant review of the definition, classification, and components of CWs, identifying the mechanisms controlling the removal process within such units. Vertical, horizontal, and hybrid CWs
... Show MoreThe objective of this study is to demonstrate the corrosion behavior of dental alloys Co-Cr-Mo, Ni-Cr-Mo and Ti-Al-V in artificial saliva at pH=4 and 37oC enriched with ethyl alcohol at 8% percentage. The linear and cyclic polarizations were investigated by electrochemical measurements. Laser surface modification was achieved for the three dental alloys to improve corrosion resistance. The results show that corrosion resistance of Co-Cr-Mo and Ni-Cr-Mo alloys only were increased after laser treatment due to the fact that laser radiation has caused a smoother surface, in addition to the decrement in corrosion current densities (icorr) for Co-Cr-Mo and Ni-Cr-Mo alloys and the reverse scan in cyclic polarization became in the wider range of
... Show MorePhenol oxidation by Fenton's reagent (H2O2 + Fe+2) in aqueous solution has been studied for the purpose of learning
more about the reactions involved and the extent of the oxidation process, under various operating conditions. An initial
phenol concentration of 100 mg/L was used as representative of a phenolic industrial wastewater. Working temperature
of 25C was tested, and initial pH was set at 5.6 . The H2O2 and the Fe+2 doses were varied in the range of
(H2O2/Fe+2/phenol = 3/0.25/1 to 5/0.5/1). Keeping the stirring speed of 200 rpm.
The results exhibit that the highest phenol conversion (100%) was obtained under (H2O/Fe+2/phenol ratio of 5/0.5/1)
at about 180 min. The study has indicated that Fenton's oxidation i
Experimental investigations have been carried out to investigate the pH-control problems of industrial electroplating wastewater treatment plants. The accurate and sensitive PID control system could treat most problem and disturbances in the normal operation of the water treatment. However, conventional treatment was replaced by proprietary treatment agent called a QUASIL which was found to be more effective for a wide range of pH.
In this study, a novel application of lab-scale dual chambered air-cathode microbial fuel cell (MFC) has been developed for simultaneous bio-treatment of real pharmaceutical wastewater and renewable electricity generation. The microbial fuel cell (MFC) was provided with zeolite-packed anodic compartment and a cation exchange membrane (CEM) to separate the anode and cathode. The performance of the proposed MFC was evaluated in terms of COD removal and power generation based on the activity of the bacterial consortium in the biofilm mobilized on zeolite bearer. The MFC was fueled with real pharmaceutical wastewater having an initial COD concentration equal to 800 mg/L and inoculated with anaerobic aged sludge. Results demo
... Show More