Preferred Language
Articles
/
ijcpe-217
Removal of Cadmium Ions from Wastewater by Batch Experiments

Adsorption experiments were carried out using two different low-cost sorbent materials, date seeds and olive seeds. These sorbents used as a single phase (not as mixture) to remove cadmium ions from simulated wastewater by adsorption process. The equilibrium time was found at 2 hr. The experiments include different parameters such sorbent type and weight and contact time. It was found that both of olive seed and date seed have approximately the same adsorption capacity (qm) with 15.644 mg/g and 15.2112 mg/g, respectively. Equilibrium isotherms and kinetic studies have been carried out. Langmuir isotherm model better fits the experimental data compared with the Freundlich isotherm for olive seed, while Freundlich isotherm fits for date seed .A pseudo-second order kinetic model was appropriate to the experimental data for both seeds. It can be concluded that the olive seed and date seed could be a good sorbent for the removal of cadmium ions from wastewater.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Nov 01 2017
Journal Name
Journal Of Engineering
Performance Evaluation of Sequencing Batch Reactor and Conventional Wastewater Treatment Plant based on Reliability assessment

Baghdad city has been faced numerous issues related to freshwater environment deteriorations due to many reasons, mainly was the discharge of wastewater without adequate treatment. Al-Rustamiya Wastewater Treatment Plant (WWTP) have been constructed among many plants in Baghdad city to reduce the amount of wastewater discharged into natural environment and its subsequent adverse effects. This study was conducted to evaluate the performance of the plant which consist of a conventional activated sludge (CAS) and sequencing batch reactors (SBR) systems as secondary treatment units and its ability to meet Iraqi specifications. A reliability level determination and analysis also were conducted to find the plant's stability an

... Show More
View Publication Preview PDF
Publication Date
Sat Feb 01 2020
Journal Name
Journal Of Water Process Engineering
Scopus (204)
Crossref (171)
Scopus Clarivate Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Proceeding Of The 1st International Conference On Advanced Research In Pure And Applied Science (icarpas2021): Third Annual Conference Of Al-muthanna University/college Of Science
Dimensional analysis of predicting the removal of chemical oxygen demand from domestic wastewater using moving bed biofilm reactor

Municipal wastewater sources are becoming increasingly important for reuse, for irrigation purposes, so they must be treated to meet environmentally friendly local or global standards. The aim of this study is to establish, calibrate, and validate a model for predicting chemical oxygen demand for the pilot plant of mobile biofilm reactors operating from municipal wastewater in Maaymyrh located in Hilla city Using the approach of dimensional analysis. The approach of Buckingham's theorem was used to derive a model of dimensional analysis design for the forecast of (COD) in the pilot plant. The effluent concentration (COD) It has been derived as a result of the influential concentration of (COD), dissolved oxygen (DO), volume of pilot plant

... Show More
Scopus Crossref
View Publication
Publication Date
Wed Jun 30 2004
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
View Publication Preview PDF
Publication Date
Tue Sep 01 2009
Journal Name
Al-khwarizmi Engineering Journal
Removal of Sulfate from Waste Water by Activated Carbon

Activated carbon was Produced from coconut shell and was used for removing sulfate from industrial waste water in batch Processes. The influence of various parameter were studied such as pH (4.5 – 9.) , agitation time (0 – 120)min and adsorbent dose (2 – 10) gm.

The Langmuir and frandlich adsorption capacity models were been investigated where showed there are fitting with langmmuir model with squre regression value ( 0.76). The percent of removal of  sulfate (22% - 38%) at (PH=7) in the isotherm experiment increased  with adsorbent mass increasing. The maximum removal value of sulfate at  different pH experiments is (43%) at pH=7.

View Publication Preview PDF
Publication Date
Mon Jan 04 2021
Journal Name
Geofluids
Performance Evaluation of Polyethersulfone Membranes for Competitive Removal of Cd2+, Co2+, and Pb2+ Ions from Simulated Groundwater

This paper presents studying the performance of three types of polyethersulfone (PES) membrane for the simultaneous removal of Co2+ ions, Cd2+ ions, and Pb2+ ions from binary and ternary aqueous solutions. Co2+ ions, Cd2+ ions, and Pb2+ ions with two different initial concentrations (e.g., 10 and 50 ppm) were selected as examples of heavy metals that contaminate the groundwater as a result of geological and human activities. This study investigated the effect of types of PES membrane and metal ions concentration on the separation process. For the binary aqueous solutions, the permeation flux of the PES2 membranes was higher for the separation process of solutions containing 50 ppm of Cd2+ ions and 10 ppm of Co2+ ions (24.7 L

... Show More
Scopus (16)
Crossref (12)
Scopus Clarivate Crossref
View Publication
Publication Date
Sat Jan 01 2011
Journal Name
Carbohydrate Polymers
Scopus (91)
Crossref (83)
Scopus Clarivate Crossref
View Publication
Publication Date
Sat Nov 28 2020
Journal Name
The Iraqi Journal Of Science
Removal of Aniline Blue from Textile Wastewater using Electrocoagulation with the Application of the Response Surface Approach

This paper investigated the treatment of textile wastewater polluted with aniline blue (AB) by electrocoagulation process using stainless steel mesh electrodes with a horizontal arrangement. The experimental design involved the application of the response surface methodology (RSM) to find the mathematical model, by adjusting the current density (4-20 mA/cm2), distance between electrodes (0.5-3 cm), salt concentration (50-600 mg/l), initial dye concentration (50-250 mg/l), pH value (2-12 ) and experimental time (5-20 min). The results showed that time is the most important parameter affecting the performance of the electrocoagulation system. Maximum removal efficiency (96 %) was obtained at a current density of 20 mA/cm2, distance be

... Show More
Crossref (6)
Crossref
Publication Date
Sat Nov 28 2020
Journal Name
Iraqi Journal Of Science
Removal of Aniline Blue from Textile Wastewater using Electrocoagulation with the Application of the Response Surface Approach

This paper investigated the treatment of textile wastewater polluted with aniline blue (AB) by electrocoagulation process using stainless steel mesh electrodes with a horizontal arrangement. The experimental design involved the application of the response surface methodology (RSM) to find the mathematical model, by adjusting the current density (4-20 mA/cm2), distance between electrodes (0.5-3 cm), salt concentration (50-600 mg/l), initial dye concentration (50-250 mg/l), pH value (2-12 ) and experimental time (5-20 min). The results showed that time is the most important parameter affecting the performance of the electrocoagulation system. Maximum removal efficiency (96 %) was obtained at a current density of 20 mA/cm2, distance between

... Show More
Scopus (14)
Crossref (6)
Scopus Crossref
View Publication Preview PDF
Publication Date
Wed Dec 25 2019
Journal Name
Journal Of Engineering
Biodegradation of Total Petroleum Hydrocarbon from Al-Daura Refinery Wastewater by Rhizobacteria

Due to the deliberate disposal of industrial waste, a great amount of petroleum hydrocarbons pollute the soil and aquatic environments. Bioremediation that depends on the microorganisms in the removal of pollutants is more efficient and cost-effective technology. In this study, five rhizobacteria were isolated from Phragmites australis roots and exposed to real wastewater from Al-Daura refinery with 70 mg/L total petroleum hydrocarbons (TPH) concentration. The five selected rhizobacteria were examined in a biodegradation test for seven days to remove TPH. The results showed that 80% TPH degradation as the maximum value by Sphingomonas Paucimobilis as identified with Vitek® 2 Compact (France).

Crossref (4)
Crossref
View Publication Preview PDF