Al-Rustamiyah plant is the oldest and biggest sewage treatment plant in Iraq; it locates in the south of Baghdad city. The plant suffers from serious problems associated with overflow and low capacity. The present work aims to upgrade the heart of biological treatment process through suggesting the use of membrane bioreactor; (MBR). In this work, fouling of membrane during sewage treatment has been analyzed experimentally and theoretically by fouling mechanisms. Aeration has been applied in order to control fouling through producing effective diameters of air bubbles close to the membrane walls. Effect of air flow rate on flux decline was investigated. Hermia's models were used to investigate the fouling mechanisms. The results showed that cake formation is the best fitted model (R2≥0.98) followed by intermediate blocking occurred with 9 L/min aeration rate. Cake layer formation is the best fit mechanism in all aeration rates (1-9 L/min) in presence of microalgae. SEM images of the membrane surface before and after filtration showed high density pores membrane surface proved a cake fouling occurring. It was found that aeration represents the most effective technique for fouling domination in addition to its important economic aspects for algae growth and propagation. An enhancement of 70.8% in flux at 9 L/min air flow has been revealed. MBR proved to be more efficient and more convenient than activated sludge since it eliminates the needing of sedimentation tanks and upgrading Al-Rustamiyah plant that has low available space for expansion.
This study concerns a new type of heat exchangers, which is that of shell-and-double concentric tube heat exchangers. The case studies include both design calculations and performance calculations.
The new heat exchanger design was conducted according to Kern method. The volumetric flow rates were 3.6 m3/h and 7.63 m3/h for the hot oil and water respectively. The experimental parameters studied were: temperature, flow rate of hot oil, flow rate of cold water and pressure drop.
A comparison was made for the theoretical and experimental results and it was found that the percentage error for the hot oil outlet temperature was (- 1.6%). The percentage
... Show MoreKE Sharquie, SA Al-Mashhadani, AA Noaimi, WB Al-Zoubaidi, Our Dermatology Online/Nasza Dermatologia Online, 2015 - Cited by 10
Ultraviolet light radiation is applied to treat Plaque Psoriasis disease by targeted phototherapy. This is available through Narrowband-UVB light radiation devices peaked at wavelength 311 nm. Ten cases were chosen as a study group, 8 males aged 22-40 years old, and 2 females aged 25 and 32 years old who were exposed to ultraviolet light radiation. Their recovery or improvement was followed weekly. Different doses were used according to the severity of the lesion and as a trial for the outcome. The dose was given two times a week, starting with 200mJ/cm2, and subsequently increased by 100 or 200 mJ/cm2 reaching a maximum dose as tolerated by each individual patient. Improvement was observed after 4 – 6 weeks. The
... Show MoreThe current research aims to identify the level of parental treatment methods tolerance, hostility, strictness, and warmth, as well as the level of self-efficacy among middle school students. Moreover, it aims to identify the correlation relationship between the variables of parental treatment methods and self-efficacy among middle school students. The research sample included (150) middle school students. For achieving the objectives of the current research, the researchers adopted a scale of parental treatment methods prepared by (Zughair, 2006), and a scale of self-efficacy prepared by (Youssef, 2016), which were applied in their final form to the research sample. The research reached the following results: parents use a low-level hos
... Show MoreTheoretical and experimental investigations of the transient heat transfer parameters of constant heat flux source subjected to water flowing in the downward direction in closed channel are conducted. The power increase transient is ensured by step change increase in the heat source power. The theoretical investigation involved a mathematical modeling for axially symmetric, simultaneously developing laminar water flow in a vertical annulus. The mathematical model is based on one dimensional downward flow. The boundary conditions of the studied case are based on adiabatic outer wall, while the inner wall is subjected to a constant heat flux. The heat & mass balance equation derived for specified element of bulk water within the annulu
... Show MoreExperimental investigation for small horizontal portable wind turbine (SHPWT) of NACA-44, BP-44, and NACA-63, BP-63 profiles under laboratory conditions at different wind velocity range of (3.7-5.8 m/s) achieved in present work. Experimental data tabulated for 2, 3, 4, and 6- bladed rotor of both profiles within range of blade pitch angles . A mathematical model formulated and computer Code for MATLAB software developed. The least-squares regression is used to fit experimental data. As the majority of previous works have been presented for large scale wind turbines, the aims were to present the performance of (SHPWT) and also to make a comparisons between both profiles to conclude which is the best performance. The overall efficiency and el
... Show MoreConvection heat transfer in a horizontal channel provided with metal foam blocks of two numbers of pores per unit of length (10 and 40 PPI) and partially heated at a constant heat flux is experimentally investigated with air as the working fluid. A series of experiments have been carried out under steady state condition. The experimental investigations cover the Reynolds number range from 638 to 2168, heat fluxes varied from 453 to 4462 W/m2, and Darcy number 1.77x10-5, 3.95x10-6. The measured data were collected and analyzed. Results show that the wall temperatures at each heated section are affected by the imposed heat flux variation, Darcy number, and Reynolds number variation. The var
... Show MoreIn this study, the use of non-thermal plasma theory to remove toxic gases emitted from a vehicle was experimentally investigated. A non-thermal plasma reactor was constructed in the form of a cylindrical tube made of Pyrex glass. Two stainless steel rods were placed inside the tube to generate electric discharge and plasma condition, by connecting with a high voltage power supply (up to 40 kV). The reactor was used to remove the contaminants of a 1.25-liter 4-cylinder engine at ambient conditions. Several tests have been carried out for a ranging speed from 750 to 4,500 rpm of the engine and varying voltages from 0 to 32 kV. The gases entering the reactor were examined by a gas analyzer and the gases concentration ratio
... Show MoreIn this work Laser wireless video communication system using intensity modualtion direct
detection IM/DD over a 1 km range between transmitter and receiver is experimentally investigated and
demonstrated. Beam expander and beam collimeter were implemented to collimete laser beam at the
transmitter and focus this beam at the receiver respectively. The results show that IM/DD communication
sysatem using laser diode is quite attractive for transmitting video signal. In this work signal to noise
ratio (S/N) higher than 20 dB is achieved in this work.