Effluent from incompetent wastewater treatment plants (WWTPs) contains a great variety of pollutants so support water treatments are essential. The present work studies the removal of phosphate species from aqueous solutions by adsorption on to spherical Calcined Sand -Clay mixture (CSCM) used a natural, local and low-cost adsorbent. Batch experiments were performed to estimate removal efficiency of phosphate. The adsorption experiments were carried out as function of pH, dose of adsorbent, initial concentration, temperature and time of adsorption. The efficient removal was accomplished for pH between 10 and 12. The experimental results also showed that the removal of phosphate by (CSCM) was rapid (the % removal 98.9%, 92%, 90%, 89% in 60 min) when the initial phosphate concentrations were at 5, 10, 15, 20 mg/l, respectively at optimum PH 10-12 and optimum dose was 5 gm/200ml. The adsorption process is time dependent. Thermodynamic studies showed that phosphate adsorption was exothermic. The effect of temperature range of 15-30 °C has been investigated. The results indicated that the temperature significantly affected phosphate adsorption on (CSCM) adsorbent. Langmuir and Freundlich isotherms models indicated that both isotherms were proper to describe the adsorption characteristics of (CSCM), with Langmuir being more fit. Adsorption capacity of phosphate had equal to 0.835 mg phosphorous/g adsorbent. The study reveal that calcined sand-clay mixture is an excellent low cost material for phosphate removal in wastewater treatment process .
In the lifetime process in some systems, most data cannot belong to one single population. In fact, it can represent several subpopulations. In such a case, the known distribution cannot be used to model data. Instead, a mixture of distribution is used to modulate the data and classify them into several subgroups. The mixture of Rayleigh distribution is best to be used with the lifetime process. This paper aims to infer model parameters by the expectation-maximization (EM) algorithm through the maximum likelihood function. The technique is applied to simulated data by following several scenarios. The accuracy of estimation has been examined by the average mean square error (AMSE) and the average classification success rate (ACSR). T
... Show MoreAtorvastatin (ATR) is poorly soluble anti-hyperlipidemic drug; it belongs to the class II group according to the biopharmaceutical classification system (BCS) with low bioavailability due to its low solubility. Solid dispersions adsorbate is an effective technique for enhancing the solubility and dissolution of poorly soluble drugs.
The present study aims to enhance the solubility and dissolution rate of ATR using solid dispersion adsorption technique in comparison with ordinary solid dispersion. polyethylene glycol 4000 (PEG 4000), polyethylene glycol 6000 (PEG 6000), Poloxamer188 and Poloxam
... Show MorePerformance of gas-solid spouted bed benefit from solids uniformity structure (UI).Therefore, the focus of this work is to maximize UI across the bed based on process variables. Hence, UI is to be considered as the objective of the optimization process .Three selected process variables are affecting the objective function. These decision variables are: gas velocity, particle density and particle diameter. Steady-state solids concentration measurements were carried out in a narrow 3-inch cylindrical spouted bed made of Plexiglas that used 60° conical shape base. Radial concentration of particles (glass and steel beads) at various bed heights and different flow patterns were measured using sophisticated optical probes. Stochastic Genetic
... Show MoreAtorvastatin (ATR) is a poorly water-soluble anti-hyperlipidemic drug. The drug belongs to the class II group according to the biopharmaceutical classification system (BCS) with low bioavailability due to its low solubility. Solid dispersion is an effective technique for enhancing the solubility and dissolution of drugs. Phospholipid solid dispersion (PSD) using phosphatidylcholine (PC) as a carrier with or without adsorbent (magnesium aluminum silicate, silicon dioxide 15nm, silicon dioxide 30nm, calcium silicate) was used to prepare ATR PSD using different drug: PC: adsorbent ratios by solvent evaporation method. The resulted PSD was evaluated for its percentage yield, drug content, solubility, dissolution rate, Fourier transforma
... Show MoreMeloxicam (MLX) is non-steroidal anti -inflammatory, poorly water soluble, highly permeable drug and the rate of its oral absorption is often controlled by the dissolution rate in the gastrointestinal tract. Solid dispersion (SD) is an effective technique for enhancing the solubility and dissolution rate of such drug.
The present study aims to enhance the solubility and the dissolution rate of MLX by SD technique by solvent evaporation method using sodium alginate (SA), hyaluronic acid (HA), collagen and xyloglucan (XG) as gastro-protective hydrophilic natural polymers.
Twelve formulas were prepared in different drug: polymer ratios and evaluated for their, percentage yield, drug content, water so
... Show MoreA total of 20 raw milk samples were used as the fouling agent for evaluating the bacteriological effectiveness of cleaning and sanitizing of domestic milking equipment by using ozonated water at 0.5 ppm comparing to the warm water at 55! for 5 minutes respectively. The mean values of total aerobic bacteria, Coliform and E.coli that present on the plastic and stainless-steel containers after using the raw milk as fouling agent were 3.4×10-6 , 6.7x10-5 and 5.8×10-3 cfu/cm2 respectively , after cleaning the stainless steel containers by the ozonated water the mean values of total aerobic bacterial counts, Coliforms and E.coli bacteria were reduced to 1.2×10-6, 4.7×10-5 and 3.3×10-3 CFU/cm2 respectively. while after cleaning by the warm wa
... Show MoreBiosorpion of lead (Pb), Cadmium (Cd) and Nickl(Ni) by dried biomass of Chara sp. for sample of BMP was used as alternative approach of conventional method. The range of removal percentages was between 92-97%, 70-98.7% and 46.6-96.6% for Pb, Cd and Ni respectively at 3h.Treatment time, with 300-500 mg dried weight from Chara sp. powder at pH 4, with 60 rpm at shaker. FTIR analysis showed the active groups which are responsible for sequestration of heavy metals represented by carboxyl, hydroxyl alkyl, amine and amide. The Biosorption equilibrium experiment for elements showed that the highest sorption percentage for three elements was, Pb 96.6% after 30 minute, for Cd was 100% after 15 minute and 40% to Ni after 75 minute, while the biosorp
... Show MoreThis study aims to test ceramic waste's capacity to remove nickel from aqueous solutions through adsorption. Ceramic wastes were collected from the Refractories Manufacturing Plant in Ramadi. Through a series of lab tests, the reaction time (5, 10, 15, 20, 25, 30, 35, 40, 45, and 50 minutes, and Ni concentrations (20, 40, 60, and 80) were tested using ceramic wastes with a solid to liquid ratio of 2g/30ml. At a temperature of 30ºC, the pH, total dissolved solids (TDS), and electrical conductivity (EC) were all measured. The equilibrium time was set at 30 min. Thereafter, the sorption (%) somewhat increased positively with the Ni concentration. Freundlich's equation showed that the adsorption intensity is 1.1827 and the Freundlich c
... Show MoreBackground: An oily calcium hydroxide formulation proved over the last years to be highly efficient in promoting bone regeneration in closed defects as periapical lesions, cysts, or post-extraction defects. The aim of the present study is the assessment of the outcome of treatment of deep intrabony periodontal defects with an Open Flap Debridement) (OFD) + combination of {(30% Hydroxyapatite HAp + 70% ?-Tricalcium Phosphate granules mixed with an Oily Calcium Hydroxide Suspension (OCHS )} and compare the results with {(OFD) alone)}. The combination of OCHS& TCP was used in humans with a sort of positive results, and more conduction of studies was recommended. Material and method: The sample of this study composed of sixteen patients;
... Show More