Effluent from incompetent wastewater treatment plants (WWTPs) contains a great variety of pollutants so support water treatments are essential. The present work studies the removal of phosphate species from aqueous solutions by adsorption on to spherical Calcined Sand -Clay mixture (CSCM) used a natural, local and low-cost adsorbent. Batch experiments were performed to estimate removal efficiency of phosphate. The adsorption experiments were carried out as function of pH, dose of adsorbent, initial concentration, temperature and time of adsorption. The efficient removal was accomplished for pH between 10 and 12. The experimental results also showed that the removal of phosphate by (CSCM) was rapid (the % removal 98.9%, 92%, 90%, 89% in 60 min) when the initial phosphate concentrations were at 5, 10, 15, 20 mg/l, respectively at optimum PH 10-12 and optimum dose was 5 gm/200ml. The adsorption process is time dependent. Thermodynamic studies showed that phosphate adsorption was exothermic. The effect of temperature range of 15-30 °C has been investigated. The results indicated that the temperature significantly affected phosphate adsorption on (CSCM) adsorbent. Langmuir and Freundlich isotherms models indicated that both isotherms were proper to describe the adsorption characteristics of (CSCM), with Langmuir being more fit. Adsorption capacity of phosphate had equal to 0.835 mg phosphorous/g adsorbent. The study reveal that calcined sand-clay mixture is an excellent low cost material for phosphate removal in wastewater treatment process .
High temperature superconductor with nominal composition Bi1.6Pb0.4Sr1.8Ba0.2Ca2 Cu3O10+? was prepared by solid state reaction method. Two sets of samples have been prepared .The first one was quenched in air; the second set was quenched in liquid nitrogen. X-ray diffraction analyses showed an orthorhombic structure with two phases, high –Tc phase (2223) and low-Tc phase (2212) in addition to that impure phase was found. It has been observed that quenched in air samples display a sharp superconducting transition and a higher-Tc phase than that of the quenched in liquid nitrogen samples.
Liquefied petroleum gases (LPG) consist of hydrocarbons obtained by refining crude oil, either from propane or butane or a mixture of the two. There are often other components such as propylene, butylene or other hydrocarbons, but they are not the main component. The study aims to review previous studies dealing with designing an LPG system to deliver gas to residential campuses and buildings. LPG is extracted from natural gas NG by several processes, passing through fractionation towers and then pressuring into CNG storage tanks. Gas contains several problems, including gas leakage through the pipes and leads to fires or explosions in LPG storage and distribution tanks, so safety conditions were taken in the design and implementation. T
... Show MoreAg nanoparticles were prepared using Nd:YAG laser from Ag matel in distilled water using different energies laser (100 and 600) mJ using 200 pulses, and study the effect of the preparation conditions on the structural characteristics of and then study the effect of nanoparticles on the rate of killing the two types of bacteria particles (Staph and E.coli). The goal is to prepare the nanoparticle effectively used to kill bacteria.
The experiment was conducted in Baghdad for study effect using mold board and disc plows as main factor , and second factor was three speeds 1.85 , 3.75 and 5.62 km / hr , and sub-second factor was three levels of soil moisture 21,18 and 14 % to determined data fuel consumption and economy costs machine unit in silt clay loam with depth 22cm. The experiment was a split – split plot arrangement in a randomized complete block design with three replications and statistical analysis using Least Significant Design 0.05 was used to compare the means of treatments. Mold board recorded least fuel consumption and cast fixed and variable and management and total costs of tractor and plow costs and total cost. Increasing forward speeds of the t
... Show MoreRefrigerant R134a has been widely utilized in automotive air conditioning systems (AACSs); R134a has a high global warming potential (GWP) of 1430 despite having zero ozone depletion potential (ODP). Coming refrigeration systems must include refrigerants with low GWP and zero ODP. The aim of this experimental study is to evaluate the thermal performance of an (AAC) with different values of compressor speeds, i.e., (1000, 1700, and 2400 rpm) and two thermal loads, i.e., (500 and 1000 Watt) with the absence and presence of liquid suction heat exchanger (LSHX) using R134a. The results showed that adding LSHX enhanced the COP cycle by 7.18%, 10.7%, and 3.09% for the first, second, and third speed, respectively, at 500 Watt, while the en
... Show MoreNatural Bauxite (BXT) mineral clay was modified with a cationic surfactant (hexadecy ltrimethy lammonium bromide (BXT-HDTMA)) and characterized with different techniques: FTIR spectroscopy, X-ray powder diffraction (XRD) and scanning electron microscopy (SEM). The modified and natural bauxite (BXT) were used as adsorbents for the adsorption of 4- Chlorophenol (4-CP) from aqueous solutions. The adsorption study was carried out at different conditions and parameters: contact time, pH value, adsorbent dosage and ionic strength. The adsorption kinetic (described by a pseudo-first order and a pseudo-second order), equilibrium experimental data (analyzed by Langmuir, Freundlich and Temkin isotherm models) and thermodynamic parameters (change in s
... Show More