Preferred Language
Articles
/
ijcpe-194
Treatment of Simulated Oily Wastewater by Ultrafiltration and Nanofiltration Processes
...Show More Authors

A study in the treatment and reuse of oily wastewater generated from the process of fuel oil treatment of gas turbine power plant was performed. The feasibility of using hollow fiber ultrafiltration (UF) membrane and nanofiltration (NF) membrane type polyamide thin-film composite in a pilot plant was investigated. Three different variables: pressure (0.5, 1, 1.5 and 2 bars), oil content (10, 20, 30 and 40 ppm), and temperature (15, 20, 30 and 40 ᵒC) were employed in the UF process while TDS was kept constant at 150 ppm. Four different variables: pressure (2, 3, 4 and 5 bar), oil content (2.5, 5, 7.5 and 10 ppm), total dissolved solids (TDS) (100, 200,300 and 400 ppm), and temperature (15, 20, 30 and 40 ᵒC) were manipulated with the help of statistical method of Taguchi in the RO process. Analysis of variable (ANOVA) and optimum condition was investigated. The study shows that pressure has the greatest impact on the flux of UF process, while temperature and pressure have similar contribution on flux of NF process. The temperature seems to have the greatest effect on TDS rejection. It was noticed that more than 96% oil removal can be achieved with flux of 624 L/m2.hr by UF process and that the fouling mechanism of UF process follows the cake/gel layer filtration model. It was observed that 100% removal of oil content can be achieved along with 79% for the TDS rejection and flux of 65 L/m2.hr by NF process. The result shows fouling in NF process follows the cake filtration model. It was concluded that the observed values are within ±5% of that the predicted which reflects a strong representative model. The treated wastewater has the characteristics that it can be reused in the process to reduce the operating cost.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Thu Dec 30 2010
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
POLYVINYL ALCOHOL/POLYVINYL CHLORIDE (PVA/PVC) HOLLOW FIBER COMPOSITE NANOFILTRATION MEMBRANES FOR WATER TREATMENT
...Show More Authors

Two different polyvinyl alcohol/polyvinyl chloride (PVA/PVC) hollow fiber composite nanofiltration membranes were prepared after PVC hollow fiber membranes were coated using dip-coating method with PVA aqueous solution, which was composed of PVA, fatty alcohol polyoxyethylene ether (AEO9), and water [PVA/AEO9/water (4:0.5:95.5) wt%]. Effect of two different PVC hollow fiber immersion times in coating solution were studied. Cross-section, internal and external surfaces of the PVC hollow fibers and PVA/PVC composite nanofiltration membranes structures were characterized by scanning electron microscopy (SEM), pure water permeation flux and solutes rejection. It was found that, the coating layer thickness on the outer surface of the 19 wt% P

... Show More
View Publication Preview PDF
Publication Date
Fri Jul 21 2023
Journal Name
Journal Of Engineering
Removal of Cadmium Ions from Simulated Wastewater Using Rice Husk Biosorbent
...Show More Authors

Biosorption of cadmium ions from simulated wastewater using rice husk was studied with initial concentration of 25 mg/l. Equilibrium isotherm was studied using Langmuir, Freundlich, BET and Timken models. The results show that the Freundlich isotherm is the best fit model to describe this process with high determination coefficient equals to 0.983. There was a good compliance between the experimental and theoretical results. Highest removal efficiency 97% was obtained at 2.5g of adsorbent, pH 6 and contact time 100 min.

View Publication Preview PDF
Crossref
Publication Date
Tue Sep 30 2008
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Electrocoagulation of phenol for wastewater treatment
...Show More Authors

Electrocoagulation is an electrochemical process of treating polluted water where sacrificial anode corrodes to produce active coagulant (usually aluminum or iron cations) into solution. Accompanying electrolytic reactions evolve gas (usually as hydrogen bubbles). The present study investigates the removal of phenol from water by this method. A glass tank with 1 liter volume and two electrodes were used to perform the experiments. The electrode connected to a D.C. power supply. The effect of various factors on the removal of phenol (initial phenol concentration, electrode size, electrodes gab, current density, pH and treatment time) were studied. The results indicated that the removal efficiency decreased as initial phenol concentration

... Show More
View Publication Preview PDF
Publication Date
Wed Sep 01 2021
Journal Name
Journal Of Ecological Engineering
Heavy Metals Removal from Simulated Wastewater using Horizontal Subsurface Constructed Wetland
...Show More Authors

This study aimed to assess the efficiency of Nerium oleander in removing three different metals (Cd, Cu, and Ni) from simulated wastewater using horizontal subsurface flow constructed wetland (HSSF-CW) system. The HSSF-CW pilot scale was operated at two hydraulic retention times (HRTs) of 4 and 7 days, filled with a substrate layer of sand and gravel. The results indicated that the HSSF-CW had high removal efficiency of Cd and Cu. A higher HRT (7 days) resulted in greater removal efficiency reaching up to (99.3% Cd, 99.5% Cu, 86.3% Ni) compared to 4 days. The substrate played a significant role in removal of metals due to adsorption and precipitation. The N. oleander plant also showed a good tolerance to the uptake of Cd, Cu, and Ni ions fr

... Show More
Crossref (14)
Crossref
Publication Date
Wed Sep 01 2021
Journal Name
Journal Of Ecological Engineering
Heavy Metals Removal from Simulated Wastewater using Horizontal Subsurface Constructed Wetland
...Show More Authors

This study aimed to assess the efficiency of Nerium oleander in removing three different metals (Cd, Cu, and Ni) from simulated wastewater using horizontal subsurface flow constructed wetland (HSSF-CW) system. The HSSF-CW pilot scale was operated at two hydraulic retention times (HRTs) of 4 and 7 days, filled with a substrate layer of sand and gravel. The results indicated that the HSSF-CW had high removal efficiency of Cd and Cu. A higher HRT (7 days) resulted in greater removal efficiency reaching up to (99.3% Cd, 99.5% Cu, 86.3% Ni) compared to 4 days. The substrate played a significant role in removal of metals due to adsorption and precipitation. The N. oleander plant also showed a good tolerance to the uptake of Cd, Cu, and Ni ions fr

... Show More
Scopus (17)
Crossref (14)
Scopus Clarivate Crossref
Publication Date
Sat Jun 06 2020
Journal Name
Egyptian Journal Of Chemistry
Treatment of petroleum refinery wastewater by electro-Fenton process using porous graphite electrodes
...Show More Authors

View Publication
Scopus (26)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Thu Oct 01 2020
Journal Name
Journal Of Engineering
Electrocoagulation for Treatment of Simulated Blowdown Water Of Cooling Tower
...Show More Authors

This study investigates the results of electrocoagulation (EC) using aluminum (Al) electrodes as anode and stainless steel (grade 316) as a cathode for removing silica, calcium, and magnesium ions from simulated cooling tower blowdown waters. The simulated water contains (50 mg/l silica, 508 mg/l calcium, and 292 mg/l magnesium). The influence of different experimental parameters, such as current density (0.5, 1, and 2 mA/cm2), initial pH(5,7, and 10), the temperature of the simulated solution(250C and 35 0C), and electrolysis time was studied. The highest removal efficiency of 80.183%, 99.21%, and 98.06% for calcium, silica, and magnesium ions, respectively, were obtained at a current de

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Mon Nov 15 2021
Journal Name
Aip Conference Proceedings
Oil skimming followed by coagulation/flocculation processes for oilfield produced water treatment and zero liquid discharge system application
...Show More Authors

The study focused on the treatment of real oilfield produced water from the East Baghdad field affiliated to the Midland Oil Company (Iraq) using an oil skimming process followed by a coagulation/flocculation process for zero liquid discharge system applications. Belt type oil skimmer was utilized for evaluating the process efficiency with various operating conditions such as temperature (17-40 °C) and time (0.5-2.5 hr.). Polyaluminum chloride (PAC) coagulant and polyacrylamide (PAM) flocculant was used to investigate the performance of the coagulation/flocculation process with PAC dosage (5-90 ppm) and pH (5-10) as operating conditions. In the skimming process, the oil content, COD, turbidity, and TSS decreased with an increase in tempera

... Show More
View Publication
Publication Date
Tue Dec 30 2014
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Coagulation/ Flocculation, Microfiltration and Nanofiltration for Water Treatment of Main Outfall Drain for Injection in Nasiriyah Oil Field
...Show More Authors

 

The present work aims to study the efficiency of coagulation/ flocculation as 1st stage, natural gravity water filter or microfiltration (MF) as 2nd stage and nanofiltration (NF) technology as final stage for treatment of water of main outfall drain (MOD) for injection in Nasiriyah oil field. Effects of operating parameters such as coagulant dosage, speed and time of slow mixing step and settling time in the 1st stage were studied. Also feed turbidity and total suspended solids (TSS) in the 2

... Show More
View Publication Preview PDF
Publication Date
Sat Mar 30 2019
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Removal of Manganese Ions (Mn2+) from a Simulated Wastewater by Electrocoagulation/ Electroflotation Technologies with Stainless Steel Mesh Electrodes: Process Optimization Based on Taguchi Approach
...Show More Authors

This study depicts the removal of Manganese ions (Mn2+) from simulated wastewater by combined electrocoagulation/ electroflotation technologies. The effects of initial Mn concentration, current density (C.D.), electrolysis time, and different mesh numbers of stainless steel screen electrodes were investigated in a batch cell by adopting Taguchi experimental design to explore the optimum conditions for maximum removal efficiency of Mn. The results of multiple regression and signal to noise ratio (S/N) showed that the optimum conditions were Mn initial concentration of 100 ppm, C.D. of 4 mA/cm2, time of 120 min, and mesh no. of 30 (wire/inch). Also, the relative significance of each factor was attained by the analysis

... Show More
View Publication Preview PDF
Crossref (5)
Crossref