In the petroleum industry, multiphase flow dynamics within the tubing string have gained significant attention due to associated challenges. Accurately predicting pressure drops and wellbore pressures is crucial for the effective modeling of vertical lift performance (VLP). This study focuses on predicting the multiphase flow behavior in four wells located in the Faihaa oil field in southern Iraq, utilizing PIPESIM software. The process of selecting the most appropriate multiphase correlation was performed by utilizing production test data to construct a comprehensive survey data catalog. Subsequently, the results were compared with the correlations available within the PIPESIM software. The outcomes reveal that the Hagedorn and Brown (HB) correlation provides the most accurate correlation for calculating pressure in FH-1 and FH-3 while the Beggs and Brill original (BBO) correlation proves to be the optimal fit for wells FH-2 and Gomez mechanistic model for FH-4. These correlations show the lowest root mean square (RMS) values of 11.5, 7.56, 8.889, and 6.622 for the four wells, respectively, accompanied by the lowest error ratios of 0.00692%, 0.00033%, 0.00787%, and 0.0011%, respectively. Conversely, Beggs and Brill original (BBO) correlation yields less accurate results in predicting pressure drop for FH-1 compared with other correlations. Similarly, correlations, such as Orkiszewski for FH-2, Duns and Ros for FH-3, and ANSARI for FH-4, also display less accuracy level. Notably, the study also identifies that single-phase flow dominates within the tubing string until a depth of 6000 feet in most wells, beyond which slug flow emerges, introducing significant production challenges. As a result, the study recommends carefully selecting optimal operational conditions encompassing variables such as wellhead pressure, tubing dimensions, and other pertinent parameters. This approach is crucial to prevent the onset of slug flow regime and thus mitigate associated production challenges.
Image classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class
... Show MoreSoil water retention curves (SWRCs) are crucial for characterizing soil moisture dynamics and are particularly relevant in the context of irrigation management. A study was carried out to obtain the SWRC, inflection point, S index, pore size distribution curve, macro porosity, and air capacity from samples submitted to saturation and re-saturation processes. Five different-texture disturbed soil samples Sandy Loam, Loam, Sandy Clay Loam, Silt Loam, and Clay were collected. After obtaining SWRC, each air-dried soil samples were submitted to particle size distribution and clay dispersed in water analyses to verify the soil lost clay. The experimental design was completely randomized with three replications using two processes of SWRC (saturat
... Show MoreMost of the medical datasets suffer from missing data, due to the expense of some tests or human faults while recording these tests. This issue affects the performance of the machine learning models because the values of some features will be missing. Therefore, there is a need for a specific type of methods for imputing these missing data. In this research, the salp swarm algorithm (SSA) is used for generating and imputing the missing values in the pain in my ass (also known Pima) Indian diabetes disease (PIDD) dataset, the proposed algorithm is called (ISSA). The obtained results showed that the classification performance of three different classifiers which are support vector machine (SVM), K-nearest neighbour (KNN), and Naïve B
... Show MoreThe issue of image captioning, which comprises automatic text generation to understand an image’s visual information, has become feasible with the developments in object recognition and image classification. Deep learning has received much interest from the scientific community and can be very useful in real-world applications. The proposed image captioning approach involves the use of Convolution Neural Network (CNN) pre-trained models combined with Long Short Term Memory (LSTM) to generate image captions. The process includes two stages. The first stage entails training the CNN-LSTM models using baseline hyper-parameters and the second stage encompasses training CNN-LSTM models by optimizing and adjusting the hyper-parameters of
... Show MoreA hand gesture recognition system provides a robust and innovative solution to nonverbal communication through human–computer interaction. Deep learning models have excellent potential for usage in recognition applications. To overcome related issues, most previous studies have proposed new model architectures or have fine-tuned pre-trained models. Furthermore, these studies relied on one standard dataset for both training and testing. Thus, the accuracy of these studies is reasonable. Unlike these works, the current study investigates two deep learning models with intermediate layers to recognize static hand gesture images. Both models were tested on different datasets, adjusted to suit the dataset, and then trained under different m
... Show More