The aim of this study is to investigate the kinetics of copper removal from aqueous solutions using an electromembrane extraction (EME) system. To achieve this, a unique electrochemical cell design was adopted comprising two glass chambers, a supported liquid membrane (SLM), a graphite anode, and a stainless-steel cathode. The SLM consisted of a polypropylene flat membrane infused with 1-octanol as a solvent and bis(2-ethylhexyl) phosphate (DEHP) as a carrier. The impact of various factors on the kinetics constant rate was outlined, including the applied voltage, initial pH of the donor phase solution, and initial copper concentration. The results demonstrated a significant influence of the applied voltage on enhancing the rate of copper mass transfer across the membrane. As the applied voltage increased, the rate constant also increased. Additionally, increasing the pH of the solution led to an initial elevate in the rate constant, reaching a maximum value at pH 5, after which it started to decline. Moreover, higher initial copper concentrations had an adverse effect on the rate constant. Notably, the concentration decay profiles observed under different operating conditions followed first-order kinetics, with correlation coefficients exceeding 0.99. The elucidation of this discovery emanated from a remarkable and striking congruence between the experimental data and the mathematical underpinnings of the first-order kinetics model. This serendipitous alignment profoundly reinforced the robustness, veracity, and unwavering reliability of meticulously obtained results, amplifying the credibility and trustworthiness of the present comprehensive study.
The mechanical function of the heart is governed by the contractile properties of the cells, the mechanical stiffness of the muscle and connective tissue, and pressure and volume loading conditions on the organ. Although ventricular pressures and volumes are available for assessing the global pumping performance of the heart, the distribution of stress and strain that characterize regional ventricular function and change in cell biology must be known. The mechanics of the equatorial region of the left, ventricle was modeled by a thick-walled cylinder. The tangential (circumferential) stress, radial stress and longitudinal stress in the wall of the heart have been calculated. There are also significant torsional shear in the wall during b
... Show MoreShatt Al-Hilla was considered one of the important branches of Euphrates River that supplies irrigation water to millions of dunams of planted areas. It is important to control the velocity and water level along the river to maintain the required level for easily diverting water to the branches located along the river. So, in this research, a numerical model was developed to simulate the gradually varied unsteady flow in Shatt AL-Hilla. The present study aims to solve the continuity and momentum (Saint-Venant) equations numerically to predict the hydraulic characteristics in the river using Galerkin finite element method. A computer program was designed and built using the programming language FORTRAN-77. Fifty kilometers was consid
... Show MoreThe aim of the current research is to verify the effect of the cognitive modeling strategy on the achievement of the chemistry course for the students of the first intermediate grade. To achieve the objective of the research, the null hypothesis was formulated via cognitive modeling strategy. The results showed that the experimental group's students performed better than the students in the control group. In the light of the results, the researchers concluded: The impact of the cognitive modeling strategy in the achievement of students of first intermediate grade in chemistry.
Astronomers have known since the invention of the telescope that atmospheric turbulence affects celestial images. So, in order to compensate for the atmospheric aberrations of the observed wavefront, an Adaptive Optics (AO) system has been introduced. The AO can be arranged into two systems: closedloop and open-loop systems. The aim of this paper is to model and compare the performance of both AO loop systems by using one of the most recent Adaptive Optics simulation tools, the Objected-Oriented Matlab Adaptive Optics (OOMAO). Then assess the performance of closed and open loop systems by their capabilities to compensate for wavefront aberrations and improve image quality, also their effect by the observed optical bands (near-infrared band
... Show MoreThe study's objective is to produce Nano Graphene Oxide (GO) before using it for batch adsorption to remove heavy metals (Cadmium Cd+2, Nickel Ni+2, and Vanadium V+5) ions from industrial wastewater. The temperature effect (20-50) °C and initial concentration effect (100-800) mg L-1 on the adsorption process were studied. A simulation aqueous solution of the ions was used to identify the adsorption isotherms, and after the experimental data was collected, the sorption process was studied kinetically and thermodynamically. The Langmuir, Freundlich, and Temkin isotherm models were used to fit the data. The results showed that Cd, Ni, and V ions on the GO adsorbing surface matched the Langmuir mo
... Show MoreMagneto-rheological (MR) valve is one of the devices generally used to control the speed of Hydraulic actuator of MR fluid. The performance of valve depends on the magnetic circuit design. Present study deals with a new design of MR valve. A mathematical model for the MR valve is developed and the simulation is carried out to evaluate the newly developed MR valve. The design of the magnetic circuit is accomplished by magnetic finite element software such as Finite Element Method Magnetic (FEMMR). The model dimensions of MR valve, material properties are taken into account. The results of analysis are presented in terms of magnetic strength H and magnetic flux density B. The simulation results based on the proposed model indicate that the ef
... Show MoreThe study's objective is to produce Nano Graphene Oxide (GO) before using it for batch adsorption to remove heavy metals (Cadmium Cd+2, Nickel Ni+2, and Vanadium V+5) ions from industrial wastewater. The temperature effect (20-50) °C and initial concentration effect (100-800) mg L-1 on the adsorption process were studied. A simulation aqueous solution of the ions was used to identify the adsorption isotherms, and after the experimental data was collected, the sorption process was studied kinetically and thermodynamically. The Langmuir, Freundlich, and Temkin isotherm models were used to fit the data. The results showed that Cd, Ni, and V ions on the GO adsorbing surface matched the Langmuir model with correlation coefficients (R2)
... Show MorePhotodynamic Action (PDA) by using appropriate wavelength of irradiation conjugated with porphyrin derivatives is a powerful mechanism of tumor destruction. Hematoporphyrin derivative has been shown to selectively localize in neoplastic cells and then cause destruction of them by generation of singlet oxygen when activated by low power He-Ne laser. Light which used in this study has been emitting from this laser has a wavelength equal to 632.8 nm (red light). Doses of laser had been varied from 3.6 J/cm2 to 14.4 J/cm2 . The beam of laser adjusted with a modified tissue culture plate. Cell lines had exposed to Hematoporphyrin D (HpD) for 24 hours before Laser exposure, their concentrations were varied from 5 µg/ml to 80 µg/ml. Resu
... Show More