Scientists are investigating the efficacy of different biosorbents for promoting economic and environmental viability in purifying contaminants. Among the primary by-products of biodiesel production is waste microalgae biomass, which has the potential to be used as a cheap biosorbent for the treatment of pollution. In the present study, the biomass left over after extracting the chlorella vulgaris was used to test the potential biosorption of CIP from simulated aqueous solutions. Bisorbent's ability was characterized using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDX). Analysis with a Fourier Transform Infrared Spectrometer revealed that CIP biosorption occurred mainly at biomass sites containing carboxyl and amino groups. The equilibrium isotherm data and biosorption kinetics were addressed in the present study. The biosorption data match the Langmuir isotherm model, and the maximal biosorption capacity was determined to be 7.56 mg/g. While The pseudo-second-order model accurately described the biosorption kinetic data. Biosorbent regeneration was also studied using two different sodium hydroxide concentrations, the results showing that after desorption, the biosorption capacity decreased from 5.2 to 3.74 and 1.77 (mg/g) using 0.1NaOH and 0.5NaOH, respectively.
Abstract
Experimental work from Magnetic Abrasive Finishing (MAF) tests was carried out design parameters (amplitude, and number of cycle which are formed the shape of electromagnetic pole), and technological parameters (current, cutting speed, working gap, and finishing time) all have an influence on the mechanical properties of the surface layer in MAF process. This research has made to study the effect of design and technological parameters on the surface roughness (Ra), micro hardness (Hv) and material removal (MR) in working zone. A set of experimental tests has been planned using response surface methodology according to Taguchi matrix (36) with three levels and six factors
... Show MoreThis study aims to test ceramic waste's capacity to remove nickel from aqueous solutions through adsorption. Ceramic wastes were collected from the Refractories Manufacturing Plant in Ramadi. Through a series of lab tests, the reaction time (5, 10, 15, 20, 25, 30, 35, 40, 45, and 50 minutes, and Ni concentrations (20, 40, 60, and 80) were tested using ceramic wastes with a solid to liquid ratio of 2g/30ml. At a temperature of 30ºC, the pH, total dissolved solids (TDS), and electrical conductivity (EC) were all measured. The equilibrium time was set at 30 min. Thereafter, the sorption (%) somewhat increased positively with the Ni concentration. Freundlich's equation showed that the adsorption intensity is 1.1827 and the Freundlich c
... Show MoreThe analysis and efficiency of phenol extraction from the industrial water using different solvents, were investigated. To our knowledge, the experimental information available in the literature for liquid-liquid equilibria of ternary mixtures containing the pair phenol-water is limited. Therefore the purpose of the present investigation is to generate the data for the water-phenol with different solvents to aid the correlation of liquid-liquid equilibria, including phase diagrams, distribution coefficients of phenol, tie-lines data and selectivity of the solvents for the aqueous phenol system.
The ternary equilibrium diagrams and tie-lines
... Show MoreElectrical Discharge Machining (EDM) is a widespread Nontraditional Machining (NTM) processes for manufacturing of a complicated geometry or very hard metals parts that are difficult to machine by traditional machining operations. Electrical discharge machining is a material removal (MR) process characterized by using electrical discharge erosion. This paper discusses the optimal parameters of EDM on high-speed steel (HSS) AISI M2 as a workpiece using copper and brass as an electrode. The input parameters used for experimental work are current (10, 24 and 42 A), pulse on time (100, 150 and 200 µs), and pulse off time (4, 12 and 25 µs) that have effect on the material removal rate (MRR), electrode wear rate (EWR) and wear ratio (WR). A
... Show MoreThe objective of this study was to progress another method for coagulation/flocculation of the microalga Chlorella vulgaris via pellet-forming of the fungal species Aspergillus niger which was isolated from municipal wastewater mud and the facultative heterotrophic microalga "C.vulgaris was used. The main factors studies were spore inoculums, organic carbon concentration in medium as well as pH variation which had considerably positive effects on microalgae/fungi co-pelletization formation. The process parameters are an inoculum1×104 spores/ML, 15 g/l sucrose as carbon source and pH ranged from 5 - 7.0 were found optimal for efficient microalgae/fungi co-pelletization formation. For autotrophic growth, when pH of culture broth was adjusted
... Show MoreAbstract
This study aimed to identify the business risks using the approach of the client strategy analysis in order to improve the efficiency and effectiveness of the audit process. A study of business risks and their impact on the efficiency and effectiveness of the audit process has been performed to establish a cognitive framework of the main objective of this study, in which the descriptive analytical method has been adopted. A survey questionnaire has been developed and distributed to the targeted group of audit firms which have profession license from the Auditors Association in the Gaza Strip (63 offices). A hundred questionnaires have been distributed to the study sample of which, a total of 84 where answered and
... Show MoreEsterification considers the most important reaction in biodiesel production. In this study, oleic acid was used as a suggested feedstock in order to study and simulate production of biodiesel. The batch esterification reaction of oleic acid was carried out at various operating conditions; temperature from 40 to 70 °C, ethanol to oleic acid molar ratio from 3/1 and 6/1 and a reaction time up to 180 min.
The catalyst used was prepared NaY zeolite, which is added to the reaction mixture as 2, 5 and 10 wt.% of oleic acid.
The results show that the optimum conditions, gives 0.81 conversion of oleic acid, were 6/1 molar ratio of ethanol/oleic acid, 5 wt.% NaY relative to initial oleic acid, 70°C and 60 minutes. The activation energy o
A simple and highly sensitive cloud point extraction process was suggested for preconcentration of micrograms amount of isoxsuprine hydrochloride (ISX) in pure and pharmaceutical samples. After diazotization coupling of ISX with diazotized sulfadimidine in alkaline medium, the azo-dye product quantitatively extracted into the Triton X-114 rich phase, dissolved in ethanol and determined spectrophotometrically at 490 nm. The suggested reaction was studied with and without extraction and simple comparison between the batch and CPE methods was achieved. Analytical variables including concentrations of reagent, Triton X-114 and base, incubated temperature, and time were carefully studied. Under the selected opti
... Show More