Scientists are investigating the efficacy of different biosorbents for promoting economic and environmental viability in purifying contaminants. Among the primary by-products of biodiesel production is waste microalgae biomass, which has the potential to be used as a cheap biosorbent for the treatment of pollution. In the present study, the biomass left over after extracting the chlorella vulgaris was used to test the potential biosorption of CIP from simulated aqueous solutions. Bisorbent's ability was characterized using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDX). Analysis with a Fourier Transform Infrared Spectrometer revealed that CIP biosorption occurred mainly at biomass sites containing carboxyl and amino groups. The equilibrium isotherm data and biosorption kinetics were addressed in the present study. The biosorption data match the Langmuir isotherm model, and the maximal biosorption capacity was determined to be 7.56 mg/g. While The pseudo-second-order model accurately described the biosorption kinetic data. Biosorbent regeneration was also studied using two different sodium hydroxide concentrations, the results showing that after desorption, the biosorption capacity decreased from 5.2 to 3.74 and 1.77 (mg/g) using 0.1NaOH and 0.5NaOH, respectively.
This study investigates the possibility of removing ciprofloxacin (CIP) using three types of adsorbent based on green-prepared iron nanoparticles (Fe.NPs), copper nanoparticles (Cu. NPS), and silver nanoparticles (Ag. NPS) from synthesized aqueous solution. They were characterized using different analysis methods. According to the characterization findings, each prepared NPs has the shape of a sphere and with ranges in sizes from of 85, 47, and 32 nanometers and a surface area of 2.1913, 1.6562, and 1.2387 m2/g for Fe.NPs, Cu.NPs and Ag.NPs, respectively. The effects of various parameters such as pH, initial CIP concentration, temperature, NPs dosage, and time on CIP removal were investigated through batch experiments. The res
... Show MoreSeveral million tons of solid waste are produced each year as a result of construction and demolition activities around the world, and brick waste is one of the most widely wastes. Recently, there has been growing number in studies that conducted on using of recycling brick waste (RBW) to produce environmentally friendly concrete. The use of brick waste (BW) as potential partial cement or aggregate replacement materials is summarized in this review where the performance is discussed in the form of the mechanical strength and properties that related to durability of concrete. It was found that, because the pozzolanic activity of clay brick powder, it can be utilized as substitute for cement in replacement level up t
... Show MoreIn this research, the possibility of using waste wooden materials (reed and sawdust) was studied to produce sustainable and thermal insulation lightweight building units , which has economic and environmental advantages. This study is intended to produce light weight building units with low thermal conductivity, so it can be used as partitions to improve the thermal insulation in buildings. Waste wooden materials were used as a partial replacement of natural sand, in different percentages (10, 20, 30, and 40) % . The mix proportions were (1:2.5) (cement: fine aggregate) with w/c of 0.4. The values of 28 days oven dry density ranged between (2060-1693) kg/m3.The thermal conductivity decreased from (0.745 to 0.2
... Show MoreTo observe the effect of media of the internal pressure on the equivalent stress distribution in the tube, an experimental study is done by constructing a testing rig to apply the hydraulic pressure and three dies are manufactured with different bulging configurations (square, cosine, and conical). In the other part, ANSYS APDL is generated to analyze the bulging process with hydraulic and rubber (natural and industrial) media. It was found that when the media is a rubber, the stress is decreased about 9.068% in case of cosine die and 5.4439% in case of conical die and 2.8544% in case of square die. So, it can be concluded that the internal pressure in the rubber media is much better than in hydraulic media. Also, the force needed for fo
... Show MoreSurfaces quality is one of the most specified customer requirements for machine parts. The major indication of surfaces quality on machined parts is surface roughness. The research aim is to study the cutting conditions and their effects on the surface roughness. This paper utilizes regression models to predict surface roughness over the machining time for variety of cutting conditions in turning. In the experimental part for turning, different types of materials (Aluminum alloy, Copper alloy, and Gray cast iron) were considered with different cutting speed ( ) and feed rate ( ). A mathematical Model depending on statistical-mathematical method between surface roughness (Rz ) and cutting condition ( , ) were derived, for the three materials
... Show MoreBackground: The association between diabetes and inflammatory dental diseases had been studied extensively for more than 50 years. A large evidence base suggests that diabetes is associated with an increased prevalence, extent and severity of gingivitis and periodontitis and loss of teeth. Many patients do not aware that they are diabetic.Objectives:The aim of the current study was to assess a fast, non-invasive, safe procedure to screen for diabetes and its severity in dental clinics and to assess the change in blood glucose level before and after tooth extraction during periodontalResults: there were no significant differences between the blood samples collected before tooth extraction from finger puncture method (FPB) and the gingival
... Show MoreRapid worldwide urbanization and drastic population growth have increased the demand for new road construction, which will cause a substantial amount of natural resources such as aggregates to be consumed. The use of recycled concrete aggregate could be one of the possible ways to offset the aggregate shortage problem and reduce environmental pollution. This paper reports an experimental study of unbound granular material using recycled concrete aggregate for pavement subbase construction. Five percentages of recycled concrete aggregate obtained from two different sources with an originally designed compressive strength of 20–30 MPa as well as 31–40 MPa at three particle size levels, i.e., coarse, fine, and extra fine, were test
... Show MoreThis work is aiming to study and compare the removal of lead (II) from simulated wastewater by activated carbon and bentonite as adsorbents with particle size of 0.32-0.5 mm. A mathematical model was applied to describe the mass transfer kinetic.
The batch experiments were carried out to determine the adsorption isotherm constants for each adsorbent, and five isotherm models were tested to choose the best fit model for the experimental data. The pore, surface diffusion coefficients and mass transfer coefficient were found by fitting the experimental data to a theoretical model. Partial differential equations were used to describe the adsorption in the bulk and solid phases. These equations were simplified and the
... Show More