A microbubble air flotation technique was used to remove chromium ions from simulated wastewater (e.g. water used for electroplating, textiles, paints and pigments, and tanning leather). Experimental parameters were investigated to analyze the flotation process and determine the removal efficiency. These parameters included the location of the sampling port from the bottom of the column, where the diffuser is located to the top of flotation column (30, 60, and 90 cm), the type of surfactant (anionic, SDS, or cationic, CTAB) and its concentration (5, 10, 15, and 20 mg/L), the pH of the initial solution (3, 5, 7, 9, and 11), the initial contaminant concentration (10, 20, 30, and 40 mg/L), the gas flow rate (0.1, 0.2, 0.3, and 0.5 L/min), and the contact time (5, 10, 15, 20, 25, 30, and 35 min). The experimental results revealed that the highest removal efficiency (95%) was achieved in 20 min with a pH of 7, a flow rate of air 0.5 L/min, an SDS surfactant concentration of 15 mg/L, and a pollutant concentration of 30 mg/L at a sampling port height of 30 cm. The use of microbubbles in comparison to normal bubbles, resulted in a 56% improvement of the removal efficiency. The flotation process follows a first-order kinetics.
The ligand 2-Hydroxy-N-pyridin-2-ylmethyl-acetamide(L) has been prepared from reaction of 2-(aminomethyl)pyridin with chloroacetic acid (1:1).It has been characterized by elemental analysis (C,H,N) ,'H, 13 C-NMR, IR and electronic spectra. The complexes of divalent (Co,Ni,Cu,Zn,Cd and Hg) ions and trivalent(Cr) ion have been synthesized and characterized by IR, electronic spectra, molar conductivity, atomic absorption and molar ratio (Ni 2+) complex. The analytical studies for the complexes show; octahedral for (Cr 3+),square planar for (Cu 2+) and (Co,Ni Zn, Cd and Hg) tetrahedral geometries. The study of biological activity of the ligand (L) and its complexes (Co,Ni,Cu,Cd,Hg) in two deferent concentration (1and5) mg/ml showed various acti
... Show MoreCoupling reaction of m-and p- amino acetop henone and p-amino benzoic acid with (LHistidine) gave the new bidentate azo ligands (L1, L2 and L3). The prepared ligands were identified by FT-IR, UV-Vis, 1HNMR and GC- mass sp ectroscopic technique. Treatment of the prepared ligands with the following metal ions (CoII, NiII, CuII, ZnII, CdII and HgII) in aqueous ethanol with a 1:2 M:L ratio and at optimum pH, yielded a series of neutral complexes of the general formula [M (L)2 Cl2]. The prepared complexes were characterized by using flame atomic absorption, FT-IR, UV-Vis and 1HNMR spectroscopic methods as well as magnetic susceptibility and conductivity measurements. Chloride ion content was also evaluated by (Mohr method). The nature of the com
... Show MoreZubair Formation is one of the richest petroleum systems in Southern Iraq. This formation is composed mainly of sandstones interbedded with shale sequences, with minor streaks of limestone and siltstone. Borehole collapse is one of the most critical challenges that continuously appear in drilling and production operations. Problems associated with borehole collapse, such as tight hole while tripping, stuck pipe and logging tools, hole enlargement, poor log quality, and poor primary cement jobs, are the cause of the majority of the nonproductive time (NPT) in the Zubair reservoir developments. Several studies released models predicting the onset of borehole collapse and the amount of enlargement of the wellbore cross-section. However, assump
... Show MoreMaximum values of one particle radial electronic density distribution has been calculated by using Hartree-Fock (HF)wave function with data published by[A. Sarsa et al. Atomic Data and Nuclear Data Tables 88 (2004) 163–202] for K and L shells for some Be-like ions. The Results confirm that there is a linear behavior restricted the increasing of maximum points of one particle radial electronic density distribution for K and L shells throughout some Be-like ions. This linear behavior can be described by using the nth term formula of arithmetic sequence, that can be used to calculate the maximum radial electronic density distribution for any ion within Be like ions for Z<20.