A microbubble air flotation technique was used to remove chromium ions from simulated wastewater (e.g. water used for electroplating, textiles, paints and pigments, and tanning leather). Experimental parameters were investigated to analyze the flotation process and determine the removal efficiency. These parameters included the location of the sampling port from the bottom of the column, where the diffuser is located to the top of flotation column (30, 60, and 90 cm), the type of surfactant (anionic, SDS, or cationic, CTAB) and its concentration (5, 10, 15, and 20 mg/L), the pH of the initial solution (3, 5, 7, 9, and 11), the initial contaminant concentration (10, 20, 30, and 40 mg/L), the gas flow rate (0.1, 0.2, 0.3, and 0.5 L/min), and the contact time (5, 10, 15, 20, 25, 30, and 35 min). The experimental results revealed that the highest removal efficiency (95%) was achieved in 20 min with a pH of 7, a flow rate of air 0.5 L/min, an SDS surfactant concentration of 15 mg/L, and a pollutant concentration of 30 mg/L at a sampling port height of 30 cm. The use of microbubbles in comparison to normal bubbles, resulted in a 56% improvement of the removal efficiency. The flotation process follows a first-order kinetics.
In order to reduce hydrostatic pressure in oil wells and produce oil from dead oil wells, laboratory rig was constructed, by injecting LPG through pipe containing mixture of two to one part of East Baghdad crude oil and water. The used pressure of injection was 2.0 bar, which results the hydrostatic pressure reduction around 246 to 222 mbar and flow rate of 34.5 liter/hr fluid (oil-water), at 220 cm injection depth. Effects of other operating parameters were also studied on the behavior of two phase flow and on the production of oil from dead oil wells.
Nanosilica was extracted from rice husk, which was locally collected from the Iraqi mill at Al-Mishikhab district in Najaf Governorate, Iraq. The precipitation method was used to prepared Nanosilica powder from rice husk ash, after treating it thermally at 700°C, followed by dissolving the silica in the alkaline solution and getting a sodium silicate solution. Two samples of the final solution were collected to study the effect of filtration on the purity of the sample by X-ray fluorescence spectrometry (XRF). The result shows that the filtered samples have purity above while the non-filtered sample purity was around The structure analysis investigated by the X-ray diffraction (XRD), found that the Nanosilica powder has an amorphous
... Show MoreUsing a reduction of TRIM simulation data, the sputtering yield behaviour of Zinc target bombard by heavy Xenon ions plasma is studied. The sputtering yield as a function of Zinc layer width, Xenon ion number, energy of ions, and the angle of ion incidence are calculated and illustrated graphically. The corresponding energy loss due to ionization, vacancies and phonons, are graphically shown and discussed. Further, we fit the calculations and expressions for fitted curves are presented with its coefficients.
In this research a local adsorbent was prepared from waste tires using two-step pyrolysis method. In the carbonization process, nitrogen gas flow rate was 0.2L/min at carbonization temperature of 500ºC for 1h. The char products were then preceded to the activation process at 850°C under carbon dioxide (CO2) activation flow rate of 0.6L/min for 3h. The activation method produced local adsorbent material with a surface area and total pore volume as high as 118.59m2 /g and 0.1467cm3/g, respectively. The produced . local adsorbent (activated carbon) was used for adsorption of lead from aqueous solution. The continuous fixed bed column experiments were conducted. The adsorption capacity performance of prepared activated carbons in this work
... Show MoreThe new Hexadentate complexes type [M(H3L3)]K were prepared from the condensation reaction of Diphenylmonoxime and KOH with (Mn(II), Co(II), Ni(II), Cu(II), Zn(II), and Hg(II)) in methanol with 3:1 ligand : metal ratio to give a series of new complexes of the general formula [M(H3L3)]K (where: M(II) = Mn ,Co ,N ,Cu ,Zn and Hg).All compounds have been Characterized by spectroscopic methods [I.R, U.v-Vis, atomic absorption and microanalysis (C.H.N) along with conductivity measurements. The stability constant K and Gibbs free energy ∆G were calculated for [Co (H3L3)] K, [Ni (H3L3)] K and [Cu (H3L3)] K and complexes using spectrophotometer method. The obtained values indicate that these complexes stable in their solution. From the above data
... Show MoreThis research is Interested in how the performance and implementation of factory production engine coolants of the General Company for Electrical Industries of its work, and to facilitate the flow of the decisions of senior management and access to all configurations, to ensure differentiation desired and reduce lost sales, resulting from poor scheduling of operations through the application of certain rules of scheduling operations in the production plant Engines Air-cooler, the objectives of research in identifying the best base and working to reduce the time and cost of Same Rules of Process which are considered the most influential of any organization and thr
... Show MoreA time series analysis can help to observe the behavior of the system and specify the system faults. In addition, it also helps to explain the various energy flows in the system and further aid in reducing the thermodynamic losses. The intelligent supervisory LabVIEW software can monitor the incoming data from the system by using Arduino microcontroller and calculates the important parameters. Energy, exergy, and anergy analysis present in this paper to investigate the system performance as well as its components. To accomplish this, a 4-ton vertical split air conditioner based on vapor compression refrigeration cycle charged with refrigerant R-22 was modified for experimental analysis. The results showed that during 540
... Show MoreThe air flow pattern in a co-current pilot plant spray dryer fitted with a rotary disk atomizer was determined experimentally and modelled numerically using Computational Fluid Dynamics (CFD) (ANSYS Fluent ) software. The CFD simulation used a three dimensions system, Reynolds-Average Navier-Stokes equations (RANS), closed via the RNG k −ε turbulence model. Measurements were carried out at a rotation of the atomizer (3000 rpm) and when there is no rotation using a drying air at 25 oC and air velocity at the inlet of 5 m/s without swirl. The air flow pattern was predicted experimentally using cotton tufts and digital anemometer. The CFD simulation predicted a downward central flowing air core surrounded by a slow
... Show More