Nanoparticles (NPs) have unique capabilities that make them an eye-opener opportunity for the upstream oil industry. Their nano-size allows them to flow within reservoir rocks without the fear of retention between micro-sized pores. Incorporating NPs with drilling and completion fluids has proved to be an effective additive that improves various properties such as mud rheology, filtration, thermal conductivity, and wellbore stability. However, the biodegradability of drilling fluid chemicals is becoming a global issue as the discharged wetted cuttings raise toxicity concerns and environmental hazards. Therefore, it is urged to utilize chemicals that tend to break down and susceptible to biodegradation. This research presents the practical application of bio-based Zinc Oxide nanoparticles (ZnO NPs) prepared chemically from celery leaf plant extract as green additive in water-based mud drilling fluid (WBM). The study aimed to evaluate the filtration and thermal stability of WBM using green-synthesized ZnO NPs. The results showed that the ZnO NPs have minimal effect of mud density, but significant improvement in mud thermal stability and filtration properties were attained with concentrations lower than 1g. The fluid loss rate was reduced by 33% with 0.45g of ZnO nanoparticles, and the thinnest mud cake was obtained as well. In terms of thermal stability, the bio-based ZnO NPs greatly enhanced the rheological properties of WBM at elevated temperatures. The rate of increment in plastic viscosity (PV) or decrement in yield point (YP) and gel strength occurred in a controllable manner compared to the rheological properties of base mud at high temperatures reaching 90°C. This study provides insight into the effect of green-synthesized ZnO nanoparticles on the performance of water-based mud and highlights their potential as an effective and environmentally friendly additive for the oil and gas industry.
characteristic tissues and cells, exerting their pharmacological aspects and alleviating a lot of diseased processes. Accordingly, this research is about introducing some isatins to be nucleophilically attacked at C3 forming products of azomethine ylide functionality. These iminium compounds were made by allowing certain isatins to be reacted with the secondary amino acid, proline, at acetic acid and methanol medium and then collected after purification to be identified with total Leukocyte count (TLC) and melting point. The structural characterization was performed by fourier-transform infrared spectroscopy (FTIR), proton nuclear magnetic resonance (1H-NMR), and community health nursing (CHN) analysis. The microbiological evaluatio
... Show MoreIn this study, the use of non-thermal plasma theory to remove toxic gases emitted from a vehicle was experimentally investigated. A non-thermal plasma reactor was constructed in the form of a cylindrical tube made of Pyrex glass. Two stainless steel rods were placed inside the tube to generate electric discharge and plasma condition, by connecting with a high voltage power supply (up to 40 kV). The reactor was used to remove the contaminants of a 1.25-liter 4-cylinder engine at ambient conditions. Several tests have been carried out for a ranging speed from 750 to 4,500 rpm of the engine and varying voltages from 0 to 32 kV. The gases entering the reactor were examined by a gas analyzer and the gases concentration ratio
... Show MoreIn this paper, we derive and prove the stability bounds of the momentum coefficient µ and the learning rate ? of the back propagation updating rule in Artificial Neural Networks .The theoretical upper bound of learning rate ? is derived and its practical approximation is obtained
In this work the fabrication and characterization of poly(3-hexylthiophene) P3HT-metallic nanoparticles (Ag, Al). Pulsed Laser Ablation (PLA) technique was used to synthesis the nanoparticles in liquid. The Fourier Transformer Infrared (FTIR) for all samples indicate the chemical interaction between the polymer and the nanoparticles. Scanning Electron Microscopic (SEM) analysis showed the particle size for P3HT-AgNps samples between 44.50 nanometers as well the spherical structure. While for P3HT-AlNps samples was flakes shape. Energy Dispersive X-ray (EDX) spectra show the existing of amount of metallic nanoparticles.
Gold nanoparticles AuNPs have proven to be powerful tools in various nanomedicine applications, because of their photo-optical distinctiveness and biocompatibility. Noble metal gold nanoparticles was prepared by pulsed laser ablation method (1064-Nd: YAG with various Laser power from 200 to 800 mJ and 1 Hz frequency) in distil water. The process was characterized using UV-VIS absorption spectroscopy. Morphology and average size of nanoparticles were estimated using AFM and X-ray diffraction (XRD) analysis which show the nature of gold nanoparticles (AuNPs). Antibacterial activity of gold nanoparticles as a function of particles concentration against gram negative bacterium Escherichia coli and gram positive bacterial Staphylococcus aureu
... Show MoreDyspepsia is a significant public health issue that affects the entire world population. In this work, we formulate and analyze a deterministic model for the population dynamics of Gut bacteria in the presence of antibiotics and Probiotic supplements. All the possible equilibria and their local stability are obtained. The global stability around the positive equilibrium point is established. Numerical simulations back up our analytical findings and show the temporal dynamics of gut microorganisms.
Deep learning (DL) plays a significant role in several tasks, especially classification and prediction. Classification tasks can be efficiently achieved via convolutional neural networks (CNN) with a huge dataset, while recurrent neural networks (RNN) can perform prediction tasks due to their ability to remember time series data. In this paper, three models have been proposed to certify the evaluation track for classification and prediction tasks associated with four datasets (two for each task). These models are CNN and RNN, which include two models (Long Short Term Memory (LSTM)) and GRU (Gated Recurrent Unit). Each model is employed to work consequently over the two mentioned tasks to draw a road map of deep learning mod
... Show MoreIn this study, the nanocrystal-ZnS-loaded graphene was synthesized by a facile coprecipitation route. The effect of graphene on the characterization of Zinc Sulphide (ZnS) was investigated. The X-ray Diffraction (XRD) results reveal that ZnS has cubic system while hexagonal structure which is observed by loading graphene during the preparation of ZnS. Energy Dispersive X-ray Spectroscopy (EDS) analysis proved the presence of all expected elements in the prepared materials. Nanosize of fabricated materials has been measured using Scanning Electron Microscopy (SEM) technique. This study also found that the graphene plays a critical role in lowering the optical energy gap of ZnS nanoparticles from 4 eV to 3.2 eV. The characterization of detec
... Show MoreIn this study, aromatic polyamide reverse osmosis membranes were used to remove zinc ions from electroplating wastewater. Influence of different operating conditions such as time, zinc concentration and pressure on reverse osmosis process efficiency was studied. The experimental results showed, concentration of zinc in permeate increase with increases of time from 0 to 70 min, and flux of water through membrane decline with time. While, the concentrations of zinc in permeate increase with the increase in feed zinc concentration (10–300 mg/l), flux decrease with the increment of feed concentration. The raise of pressure from 1 to 4 bar, the zinc concentration decreases and the flux increase. The highest recovery percentage was found is 54.
... Show More