Nanoparticles (NPs) have unique capabilities that make them an eye-opener opportunity for the upstream oil industry. Their nano-size allows them to flow within reservoir rocks without the fear of retention between micro-sized pores. Incorporating NPs with drilling and completion fluids has proved to be an effective additive that improves various properties such as mud rheology, filtration, thermal conductivity, and wellbore stability. However, the biodegradability of drilling fluid chemicals is becoming a global issue as the discharged wetted cuttings raise toxicity concerns and environmental hazards. Therefore, it is urged to utilize chemicals that tend to break down and susceptible to biodegradation. This research presents the practical application of bio-based Zinc Oxide nanoparticles (ZnO NPs) prepared chemically from celery leaf plant extract as green additive in water-based mud drilling fluid (WBM). The study aimed to evaluate the filtration and thermal stability of WBM using green-synthesized ZnO NPs. The results showed that the ZnO NPs have minimal effect of mud density, but significant improvement in mud thermal stability and filtration properties were attained with concentrations lower than 1g. The fluid loss rate was reduced by 33% with 0.45g of ZnO nanoparticles, and the thinnest mud cake was obtained as well. In terms of thermal stability, the bio-based ZnO NPs greatly enhanced the rheological properties of WBM at elevated temperatures. The rate of increment in plastic viscosity (PV) or decrement in yield point (YP) and gel strength occurred in a controllable manner compared to the rheological properties of base mud at high temperatures reaching 90°C. This study provides insight into the effect of green-synthesized ZnO nanoparticles on the performance of water-based mud and highlights their potential as an effective and environmentally friendly additive for the oil and gas industry.
University libraries seek to evaluate their performance in order to correct their path and adjust it in the right direction. Therefore, they use (performance indicators), which are a tool used by institutions to evaluate the weaknesses and strengths in their work and the reasons for failure to achieve some goals sometimes. They convert (goals, procedures and actions) into a formula that can be measured mathematically, which contributes to the library determining the gap between its current performance and what those libraries are supposed to be on, clarifying the path that the library is following, controlling the risks that may befall it, and thus enhancing the process of continuous improvement to avoid areas of failure and weakness becaus
... Show MoreA numerical simulation is made on the thermal lensing effect in an laser diode end-pumped Nd:YAG laser rod. Based on finite element method (FEM), the laser rod temperature distribution is calculated and the focal length is deduced for a Gaussian and super-Gaussian pump beam profiles.
At the pump power of 20W, the highest temperature located at the center of end-pumped face was 345K, and the thermal lens focal length was 81.4mm along the x-z axis.
The results indicate that the thermal lensing effect sensitively depend on the pump power, waist radius of the pump beam and the pump distribution in a laser rod geometry.
Abstract
Locally natural occurring Iraqi rocks of Bauxite and Porcelanite (after pre calcinations at 1000oC for 1hr) were used, with the addition of different proportions of MgO and Al2O3, to prepare refractory materials. The effects of these additives on the physical and thermal properties of the prepared refractories were investigated.
Many batches of Bauxite/MgO, Bauxite/Al2O3, Bauxite/MgO/Al2O3, and Porcelanite/ MgO/Al2O3 were prepared. The mixture is milled and classified into different size fractions; fine (less than 45μm) 40%, middle (45-75μm) 40%, and coarse (75-106μm) 20% .
... Show MoreThe interaction of charged particles with the chemical elements involved in the synthesis of human tissues is one of the modern techniques in radiation therapy. One of these charged particles are alpha particles, where recent studies have confirmed their ability to generate radiation in a highly toxic localized manner because of its high ionization and short its range. In this work, We focused our study on the interaction of alpha particles with liquid water; since the water represents over 80% of the most-soft tissues, as well as, hydrogen, oxygen, and nitrogen ,because they are key chemical elements involved in the synthesis of most human tissues. The mass stopping powers of alpha particle with HଶO , COଶ, Oଶ, Hଶ and Nଶhave
... Show MoreThe Central Marshes are one of southern Iraq's most important wetlands and ecosystems. A study on evaluating soil quality and water quality in terms of chemical properties at certain sites in the southern Iraqi Central Marshes has been conducted to investigate their types and suitability for enhancing the agricultural reality of most field crops. Soil and water samples were collected from 15 sites and transferred to the laboratory. In the lab, the following parameters were determined: electrical conductivity (EC), total dissolved salts (TDS), organic materials (OM), pH, gypsum, and total sulfate content (SO3). The tests conducted on the samples indicated that it could be said that the soil of the Central Marshes
... Show MoreDirect contact membrane distillation is an effective method for production of fresh water from saline water. In this study two samples were used as feed solutions; the first one was RO waste from Al-Hilla Coca-Cola Factory (TDS= 2382 mg/l) and the other was Haji Ali drainage water (TDS= 4127 mg/l). Polytetrafluoroethylene (PTFE) hydrophobic membrane supported with polypropylene (PP) was used as flat sheet form with plate and frame cell. Results proved that membrane distillation is an effective technique to produce fresh water with high quality from brine with low salinity content. With membrane area of 8x8 cm2, the volume of treated water decreased from 34.97 ml at first half hour to 33.02 ml after 180 min of
... Show More
