The economical and highly performed anode material is the critical factor affecting the efficiency of electro-oxidation toward organics. The present study aimed to detect the best conditions to prepare Mn-Co oxide composite anode for the electro-oxidation of phenol. Deposition of Mn-Co oxide onto graphite substrate was investigated at 25, 30, and 35 mA/cm2 to detect the best conditions for deposition. The structure and the crystal size of the Mn-Co oxide composite electrode were examined by using an X-Ray diffractometer (XRD), the morphological properties of the prepared electrode were studied by scanning electron microscopy (SEM) and Atomic force microscopy (AFM) techniques, and the chemical composition of the various deposited oxide was characterized by energy dispersive X-ray spectroscopy (EDX). The study also highlighted the effect of current density (40, 60, and 80 mA/cm2), pH (3, 4, and 5), and the concentration of NaCl (1, 1.5, and 2 g/l) on the anodic electro-oxidation of phenol was investigated. The results revealed that the composite anodes are successfully prepared galvanostatically by anodic and cathodic deposition. In addition, the current density of 25 mA/cm2 gave the best cathodic deposition performance. The removal efficiency of phenol and other by-products increased as the current density and the concentration of NaCl in the electrolyte increased, while it decreased as the pH increased. The prepared composite electrode gave high COD removal efficiency (98.769 %) at the current density of 80 mA/cm2, pH= 3, NaCl conc. of 2 g/L within 3 h.
Xanthomonas axonopodis pv glycines (Xag) is a pathogen that causes pustule disease in soybeans. Many
techniques for controlling this disease have been widely developed, one of which is the use of biological agents.
Bacillus sp. from the soybean phyllosphere is a biological agent that has the potential to suppress the
development of pustule disease. One of the biological control mechanisms is through biochemical induction
of plant resistance which includes the accumulation of phenols, salicylic acid compounds, and peroxidase
enzymes. Bacillus subtilis JB12 and Bacillus velezensis ST32 are two bacteria isolated from the soybean
phyllosphere which have previously been known to suppress Xag through an anti
Carbonized nonwoven nanofibers composite were fabricated using the electrospinning method of a polymeric solution composite followed by heat treatment including stabilization and calcination steps. The spun polymeric solution was a binary polymer mixture/organic solvent. In this study, two types of polymers (Polymethylmethacrylate (PMMA) and Polyethylene glycol (PEG)) were used separately as a copolymer with the base polymer (Polyacrylonitrile (PAN)) to prepare a binary polymer mixture in a mixing ratio of 50:50. The prepared precursor solutions were used to prepare the precursor nanofibers composite (PAN: PMMA) and (PAN: PEG). The fabricated precursors nonwoven fibers composite were stabilized and carbonized to produce carbon nonw
... Show MoreBackground: Dental erosion is a common oral condition which results due to consumption of high caloric and low pH acidic food such as carbonated drinks and fruit juices. It is expected that these food types can cause irreversible damage to dental hard tissues and early deterioration of the dental restorations. So, this study aimed to evaluate and compare the erosive potential effects of orange fruit juice and Miranda orange drink on the microhardness of an orthodontic composite material. Materials and methods: Thirty discs with a thickness of 2 mm and a diameter of 10 mm were prepared from orthodontic bonding composite. The prepared discs were equally divided into three groups (n=10). Microhardness analysis was carried out both prior to
... Show MoreThe present work divided into two parts, first the experimental side which included the
measuring of the first natural frequency for the notched and unnotched cantilever composite beams
which consisted of four symmetrical layers and made of Kevlar- epoxy reinforced. A numerical
study covers the effect of notches on the natural frequencies of the same specimen used in the
experimental part. The mathematical model for the beam contains two open edges on the upper
surface. The effect of the location of cracks relative to the restricted end, depth of cracks, volume
fraction of fibers and orientation of the fiber on the natural frequencies are explored. The results
were calculated using the known engineering program (ANSY
In this study, iron was coupled with copper to form a bimetallic compound through a biosynthetic method, which was then used as a catalyst in the Fenton-like processes for removing direct Blue 15 dye (DB15) from aqueous solution. Characterization techniques were applied on the resultant nanoparticles such as SEM, BET, EDAX, FT-IR, XRD, and zeta potential. Specifically, the rounded and shaped as spherical nanoparticles were found for green synthesized iron/copper nanoparticles (G-Fe/Cu NPs) with the size ranging from 32-59 nm, and the surface area was 4.452 m2/g. The effect of different experimental factors was studied in both batch and continuous experiments. These factors were H2O2 concentration, G-Fe/CuNPs amount, pH, initial DB15
... Show MoreBackground :Evening preparation for colonoscopy is often unsatisfactory and inconvenient. This study was performed to compare the efficacy of bowel preparation at two different timings: night before and morning of endoscopy and to compare the cecal intubation rate and disturbance of sleep hours between these two groups.
Methods: In this prospective randomized endoscopist- blinded trial, 150 patients were enrolled between March 2010 and August 2011. Patients aged between 18 to 80 years needing colonoscopy were included. Patients with prior bowel surgery, suspected bowel obstruction or those who didn't completely fulfill the preparation instructions were excluded. Patients received polyethyelen glycol electrolyte preparation in a mornin
Therapeutically and prophylactically using Microspheres containing doxycycline isolated from shell of shrimp. Low molecule weight poly lactic acid was prepared. In this study, Poly lactic acid (PLA)/ poly vinyl alcohol (PVA)/poly ethyleneglycol(PEG) loading doxycycline blend solutions was prepared. Also Poly lactic acid (PLA)-Tannin blend via solvent evaporation method was prepared. Microspheres of chitosan/gelatin microsphere loading doxycycline was prepared by emulsion crosslinking technique. Both microsphere and blends were characterized by Fourier transform infrared (FTIR) spectrophotometer. The FTIR spectra were shown distinguish bands. The in vitro release of doxcycline from its matrix at pH 7 was studied. The prophylactic
... Show More