The economical and highly performed anode material is the critical factor affecting the efficiency of electro-oxidation toward organics. The present study aimed to detect the best conditions to prepare Mn-Co oxide composite anode for the electro-oxidation of phenol. Deposition of Mn-Co oxide onto graphite substrate was investigated at 25, 30, and 35 mA/cm2 to detect the best conditions for deposition. The structure and the crystal size of the Mn-Co oxide composite electrode were examined by using an X-Ray diffractometer (XRD), the morphological properties of the prepared electrode were studied by scanning electron microscopy (SEM) and Atomic force microscopy (AFM) techniques, and the chemical composition of the various deposited oxide was characterized by energy dispersive X-ray spectroscopy (EDX). The study also highlighted the effect of current density (40, 60, and 80 mA/cm2), pH (3, 4, and 5), and the concentration of NaCl (1, 1.5, and 2 g/l) on the anodic electro-oxidation of phenol was investigated. The results revealed that the composite anodes are successfully prepared galvanostatically by anodic and cathodic deposition. In addition, the current density of 25 mA/cm2 gave the best cathodic deposition performance. The removal efficiency of phenol and other by-products increased as the current density and the concentration of NaCl in the electrolyte increased, while it decreased as the pH increased. The prepared composite electrode gave high COD removal efficiency (98.769 %) at the current density of 80 mA/cm2, pH= 3, NaCl conc. of 2 g/L within 3 h.
Pure and doped barium titanate with Mg2+ ion at two molar ratios x= (5%, 10%) mol. has been synthesized by solid state reaction technique. The powders sintered at two temperatures (1000 °C and 1400 °C). An XRD technique was used in order to study the crystal structure of pure and doped barium titanate, which confirmed the formation of the tetragonal phase of BaTiO3, and then calculate the lattice parameters of pure and doped barium titanate, the addition of magnesium ion Mg2+ can lead to decreases lattice parameters.
The determination of captopril (CAP) using a new continuous flow injection analysis (CFIA) method was given in this work CAP in its pure state and some of its pharmaceutical preparations. The technique can be described as simple, fast, sensitive, easy to operate, and low-cost. The CAP reacted with ammonium ceric(IV) sulfate (ACS)2(NH4 )2SO4Ce(SO4)2. 3 H2O in an acidic medium and the reaction led to the formation of a white, slightly yellowish precipitate. The formed precipitate was studied using Ayah 6S×1-ST-2D Solar cell-CFI Analyzer, a through the reflection of accident light on the surfaces of the precipitate particles at (0-1800), expressed as the response
... Show MoreThe physical, mechanical, electrical and thermal properties containing (Viscosity, curing, adhesion force, Tensile strength, Lap shear strength, Resistively, Electrical conductivity and flammability) of adhesive material that prepared from Nitrocellulose reinforced with graphite particles and aluminum streat. A comparison is made between the properties of adhesive material with varying percentage of graphite powder (0%, 25%, 30%, 35%, 40%) to find out the effect of reinforcement on the adhesive material. The ability of property an electrical was studied through the measurement of conductivity a function of temperature varying. The results of comparison have clearly shown that the increasing of conten
... Show MoreIn this study, iron was coupled with copper to form a bimetallic compound through a biosynthetic method, which was then used as a catalyst in the Fenton-like processes for removing direct Blue 15 dye (DB15) from aqueous solution. Characterization techniques were applied on the resultant nanoparticles such as SEM, BET, EDAX, FT-IR, XRD, and zeta potential. Specifically, the rounded and shaped as spherical nanoparticles were found for green synthesized iron/copper nanoparticles (G-Fe/Cu NPs) with the size ranging from 32-59 nm, and the surface area was 4.452 m2/g. The effect of different experimental factors was studied in both batch and continuous experiments. These factors were H2O2 concentration, G-Fe/CuNPs amount, pH, initial DB15
... Show MoreUrea formaldehyde resin was prepared by using basic media by yield 95%. The Remaining of ureaplasts resin were prepared in acetic acid media by high yield. Alkyde resins were prepared by condensation polymerization by react Succinic, Maleic, Phthalic anhydrides with Ethylene glycol or Glycerol. Select samples of the prepared alkyde resins were mixed with Azo dyes in special ratio. The mixtures were used as coatings for wood, and compaised with pure dyes. The Coating that some alkyde resins showed better adhesion from using dyes alone. Preparation of wood coating by mixing ureaplast resins and alkyde resins with Azo dyes in special ratios. The coating showed better adhesion, brighter colors and better resistance to heat from Preceding coat
Background :Evening preparation for colonoscopy is often unsatisfactory and inconvenient. This study was performed to compare the efficacy of bowel preparation at two different timings: night before and morning of endoscopy and to compare the cecal intubation rate and disturbance of sleep hours between these two groups.
Methods: In this prospective randomized endoscopist- blinded trial, 150 patients were enrolled between March 2010 and August 2011. Patients aged between 18 to 80 years needing colonoscopy were included. Patients with prior bowel surgery, suspected bowel obstruction or those who didn't completely fulfill the preparation instructions were excluded. Patients received polyethyelen glycol electrolyte preparation in a mornin
Carbonized nonwoven nanofibers composite were fabricated using the electrospinning method of a polymeric solution composite followed by heat treatment including stabilization and calcination steps. The spun polymeric solution was a binary polymer mixture/organic solvent. In this study, two types of polymers (Polymethylmethacrylate (PMMA) and Polyethylene glycol (PEG)) were used separately as a copolymer with the base polymer (Polyacrylonitrile (PAN)) to prepare a binary polymer mixture in a mixing ratio of 50:50. The prepared precursor solutions were used to prepare the precursor nanofibers composite (PAN: PMMA) and (PAN: PEG). The fabricated precursors nonwoven fibers composite were stabilized and carbonized to produce carbon nonw
... Show MoreIn the present study, the structural properties which included the X-rays diffraction, and DSC, the mechanical properties, which include tensile test, threepoint bending test (Bending Test), hardness test and thermal conductivity of the polymers reinforced with calcite (PVC/CaCO3) at different temperature (25-40-80-
120-160-200-220) °C. The research results showed that the XC degree of X-ray diffraction decreased at high temperatures (220 ˚C), while the inter-polymerized polymer (PVC / CaCO3) increased at high temperatures. The DSC test results showed that the degree of crystallinity (XC) decreases at high temperatures (220 ˚C). The mechanical test results, their values were found to decrease at (
Fiber reinforced polymer composite is an important material for structural application. The diversified application of FRP composite has taken center of attraction for interdisciplinary research. However, improvements on mechanical properties of this class of materials are still under research for different applications. In this paper we have modified the epoxy matrix by Al2O3, SiO2 and TiO2 nano particles in glass fiber/epoxy composite to improve the mechanical and physical properties. The composites are fabricated by hand lay-up method. It is observed that mechanical properties like flexural strength, hardness are more in case of SiO2 modified epoxy composite compare to other nano
... Show More