Water contamination is a pressing global concern, especially regarding the presence of nitrate ions. This research focuses on addressing this issue by developing an effective adsorbent for removing nitrate ions from aqueous solutions. two adsorbents Chitosan-Zeolite-Zirconium (Cs-Ze-Zr composite beads and Chitosan-Bentonite-Zirconium Cs-Bn-Zr composite beads were prepared. The study involved continuous experimentation using a fixed bed column with varying bed heights (1.5 and 3 cm) and inlet flow rates (1 and 3 ml/min). The results showed that the breakthrough time increased with higher bed heights for both Cs-Ze-Zr and Cs-Bn-Zr composite beads. Conversely, an increase in flow rate led to a decrease in breakthrough time. Notably, Cs-Ze-Zr and Cs-Bn-Zr demonstrated impressive removal efficiencies, reaching 87.23% and 92.02%, respectively. The optimal conditions for peak performance were found to be an inlet flow rate of 1 ml/min, a bed height of 3 cm, and initial concentrations of 400 mg/L and 600 mg/L for Cs-Ze-Zr and Cs-Bn-Zr, respectively.
In this paper, effective slab width for the composite beams is investigated with special emphasis on the effect of web openings. A three dimensional finite element analysis, by using finite element code ANSYS, is employed to investigate shear lag phenomenon and the resulting effective slab width adopted in the classical T-beam approach. According to case studies and comparison with limitations and rules stipulated by different standards and codes of practice it is found that web openings presence and panel proportion are the most critical factors affecting effective slab width, whereas concrete slab thickness and steel beam depth are less significant. The presence of web opening reduces effective slab width by about 21%.
... Show MoreTo promote sustainable steel-concrete composite structures, it is essential to develop special shear connectors that facilitate accelerated construction and deconstruction. A lockbolt demountable shear connector (LBDSC) was recently proposed. While the LBDSC has been evaluated using horizontal and vertical (standard) push-out tests, it is essential to further assess the disassembly mechanism and the positive flexural performance of prefabricated demountable composite beams (PDCBs) under both serviceability and ultimate limit states. Two full-scale test specimens of PDCBs with LBDSC were designed with partial shear connections and assessed using a three or four-point load beam setup under both cyclic and static monotonic loading conditions.
... Show MoreOily wastewater is one of the most challenging streams to deal with especially if the oil exists in emulsified form. In this study, electrospinning method was used to prepare nanofiberous polyvinylidene fluoride (PVDF) membranes and study their performance in oil removal. Graphene particles were embedded in the electrospun PVDF membrane to enhance the efficiency of the membranes. The prepared membranes were characterized using a scanning electron microscopy (SEM) to verify the graphene stabilization on the surface of the membrane homogeneously; while FTIR was used to detect the functional groups on the membrane surface. The membrane wettability was assessed by measuring the contact angle. The PVDF and PVDF / Graphene membranes efficiency
... Show MorePhotocatalytic degradation of methylene blue was studied using CdS and ZnS as catalyst. The photocatalytic activity of the specimen was studied by exposing to UV-radiation. The result shows that the degradation efficiency of the dye for CdS micro-particles was 92% after 7 hours and for ZnS micro-particles was 88.29% for the same time interval.
Normal concrete is weak against tensile strength, has low ductility, and also insignificant resistance to cracking. The addition of diverse types of fibers at specific proportions can enhance the mechanical properties as well as the durability of concrete. Discrete fiber commonly used, has many disadvantages such as balling the fiber, randomly distribution, and limitation of the Vf ratio used. Based on this vision, a new technic was discovered enhancing concrete by textile-fiber to avoid all the problems mentioned above. The main idea of this paper is the investigation of the mechanical properties of SCC, and SCM that cast with 3D AR-glass fabric having two different thicknesses (6, 10 mm), and different layers (1,2 laye
... Show MoreThe utilization and incorporation of glass fiber-reinforced plastics (GFRP) in structural applications and architectural constructions are progressively gaining prominence. Therefore, this paper experimentally and numerically investigates the use of GFRP I-beams in conjunction with concrete slabs to form composite beams. The experimental design incorporated 2600 mm long GFRP I-beams which were connected compositely to concrete slabs with a 500 mm width and 80 mm thickness. The concrete slabs are categorized into two groups: concrete slabs cast using normal-strength concrete (NSC), and concrete slabs prepared using high-strength concrete (HSC). Various parameters like the type of concrete (normal and high-strength concrete), type of
... Show MoreWater flow into unsaturated porous media is governed by the Richards’ partial differential equation expressing the mass conservation and Darcy’s laws. The Richards’ equation may be written in three forms,where the dependent variable is pressure head or moisture content, and the constitutive relationships between water content and pressure head allow for conversion of one form into the other. In the present paper, the “moisture-based" form of Richards’ equation is linearized by applying Kirchhoff’s transformation, which
combines the soil water diffusivity and soil water content. Then the similarity method is used to obtain the analytical solution of wetting front position. This exact solution is obtained by means of Lie’s