Silica-based mesoporous materials are a class of porous materials with unique characteristics such as ordered pore structure, large surface area, and large pore volume. This review covers the different types of porous material (zeolite and mesoporous) and the physical properties of mesoporous materials that make them valuable in industry. Mesoporous materials can be divided into two groups: silica-based mesoporous materials and non-silica-based mesoporous materials. The most well-known family of silica-based mesoporous materials is the Mesoporous Molecular Sieves family, which attracts attention because of its beneficial properties. The family includes three members that are differentiated based on their pore arrangement. In this review, the major applications of the Mobil Mesoporous Molecular Sieves family, such as catalysts, adsorbents, and drug delivery agents, have been surveyed. Furthermore, the synthesis of the Mesoporous Molecular Sieves materials, the silica sources, the importance of templates, and the mechanisms of the synthesis are discussed herein. Members of this material family are characterized by many physicochemical properties that are closely related to their high silica content, crystalline structure, and pore arrangement. Commonly, the members of this family have large surface areas, high pore volumes, small pore sizes, and narrow and uniform particle size distributions. These properties enable numerous industrial applications and opportunities for scientific studies to further develop existing materials or manufacture new ones.
Schiff bases (Sh1-Sh3) have been synthesized (p-aminophenol) was condensed with different aromatic aldehyde in ethanol inthe presence of glacial acetic acid as catalyst. These Schiff bases on treatment with monochloroacetyl choride gave 3-chloro-1-(4-hydroxyphenyl)-4-(substituted)azetidin-2-one(Az4-Az6), with αmercaptoacetic acid gave 3-(4-hydroxyphenyl)-2-( substituted)thiazolidin-4-one (Th7-Th9) and with anthranilic acid gave 3-(4-hydroxyphenyl)-2(substituted)-2,3-dihydroquinazolin-4(1H)-one (Qu10-Qu12). The purity of the derivatives was confirmed by TLC. The some compoundsidentify by (FT-IR and1H, 13C-NMR) data. Some of derivatives were evaluated activity against several microbesto determine ability to inhibit bacterial in some h
... Show More2-(2-amino-5-nitro-phenylazo) -phenol was ready by grouping the diazonium salt of 2-aminophenol with 4-nitroaniline.Thegeometry of azo ligand(HL)was resolved on the origin of (C.H.N) analysis, 1H and 13CNMR spectra, infrared spectra and UV–vis electronic absorption spectra. Dealing with the azo ligand produced with Nd+3,Cd+3,Dy+3 and Er+3at aqueous ethanol for a 1:2 metal: ligand rate, and in perfect ph. The formation for compounds have been described by utilizing flame atomic absorption,(C.H.N) Analyses, conductivity, infrared spectra and UV–vis spectral procedures. Nature in the produced compounds have been studied obey the ratio of mole and continuous variance manners, Beer's law yielded up a concentration rate (1×10-4 - 3×10-4M) .
... Show MoreAbstract. In this work, Bi2O3 was deposited as a thin film of different thickness (400, 500, and 600 ±20 nm) by using thermal oxidation at 573 K with ambient oxygen of evaporated bismuth (Bi) thin films in a vacuum on glass substrate and on Si wafer to produce n-Bi2O3/p-Si heterojunction. The effect of thickness on the structural, electrical, surface and optical properties of Bi2O3 thin films was studied. XRD analysis reveals that all the as deposited Bi2O3 films show polycrystalline tetragonal structure, with preferential orientation in the (201) direction, without any change in structure due to increase of film thickness. AFM and SEM images are used to investigate the influences of film thickness on surface properties. The optical measur
... Show MoreIn this work, copper substituted cobalt ferrite nanoparticles with
chemical formula Co1-xCuxFe2O4 (x=0, 0.3, and 0.7), has been
synthesized via hydrothermal preparation method. The structure of
the prepared materials was characterized by X-ray diffraction (XRD).
The (XRD) patterns showed single phase spinel ferrite structure.
Average crystallite size (D), lattice constant (a), and crystal density
(dx) have been calculated from the most intense peak (311).
Comparative standardization also performed using smaller average
particle size (D) on the XRD patterns of as-prepared ferrite samples
in order to select most convenient hydrothermal synthesis conditions
to get ferrite materials with smallest average particl
Polycyclicacetal was prepared by the reaction of PEG with 4-nitrobenzaldehyde. Cobalt was used for producing a polymer metal complex and solution casting was used to produce a polymer blend including nano chitosan. All produced compounds have been characterized by FT-IR, DSC/ TGA, and SEM techniques as well as biological activity. The production of polyacetal is illustrated by the FT-IR analysis. The DSC/TGA results indicate the prepared polymer blends' thermal stability. Staphylococcus aureas, Klebsiella pneumoniae, Bacillus subtilis, and Escherichia coli were the four types of bacteria selected to study and evaluate the antibacterial activity of produced polyacetal, its metal complex, and polymer blend. Results indicates that ther
... Show MoreIn this study, the acid-alkaline transesterification of refined coconut seed oil (RCOSO) to fatty acid methyl ester was followed by the production of a trimethylolpropane-based thermosensitive biolubricant using potassium hydroxide, and its physicochemical characteristics were evaluated. The American Standard Test for Materials (ASTM) was employed to ascertain the biolubricant's pour point and index of viscosity, which were found to be -4 oC and 283.75, respectively. The opposite connection between lubricant viscosity and temperature was shown by the measured viscosities at varied transesterification to be transformed into biodiesel. Following this, a biolubricant was created by further transesterifiedtemperature. The ester gr
... Show More4-(((4-hydroxy-3,5-dimethoxybenzyl)oxy)methyl)benzoic acid was synthesized from multisteps and converted to their corresponding hydrazide. The corresponding hydrazide was cyclized to their corresponding 5-amino-1,3,4-oxadizole. Newly Schiff bases (7a-7e) were synthesized from reaction the 5-amino-1,3,4-oxadizole with several substituted of 4-hydroxybenzylaldehyde. The resulting compounds were characterized based on their IR, 1H-NMR, 13C-NMR, and HRMS data. 2,2-Diphenyl-1-picrylhydrazide (DPPH) and ferric reducing antioxidant power (FRAP) assays were used to test the antioxidant properties of the synthesized compounds. Compound 7d and 7e exhibited significant free-radical scavenging ability in both assays.
were prepared by condensation of 6-R-2amino bcnzothiazol with Salicyldehyde.These Schiff bases were found to reach with maleic anhydride and citraconic to give
This study is included the preparation of two tetradentate amide-thiol proligands of the general structure [H2Ln], [where; (n = (1–2)]. The ligands [H2L1] and [H2L2] have been prepared from the reaction of the cyclic thioester 2-oxo-1, 4-dithiacyclohexane (compound 1) and 3-chloro-2-oxo-1, 4 dithiacyclohexane (compound 2) with 2-aminomethanepyridine in (1:1) ratio respetively. The reaction was carried out in chloroform at room temperature and under N2 atmosphere. Structural formula of these two ligands have been reported.
New compounds of amids [IV]a-e and Schiff bases [V]f-h derived from 2-amino-1,3,4-oxadiazoles [III] were synthesized and characterized by physical and spectraldata.2-Aamino-1,3,4-oxadiazoles was prepared by the action of bromine on acorresponding semicarbazide [II]( which was prepared by reaction of dialdehyde [I]with semicarbazide hydrochloride ) in the presence of sodium acetate , followed byan intramolecular cyclization . (PDF) Synthesis of New Amides and Schiff Bases derived From 2-Amino -1,3,4- Oxadiazole. Available from: https://www.researchgate.net/publication/326679206_Synthesis_of_New_Amides_and_Schiff_Bases_derived_From_2-Amino_-134-_Oxadiazole [accessed Nov 15 2023].