Silica-based mesoporous materials are a class of porous materials with unique characteristics such as ordered pore structure, large surface area, and large pore volume. This review covers the different types of porous material (zeolite and mesoporous) and the physical properties of mesoporous materials that make them valuable in industry. Mesoporous materials can be divided into two groups: silica-based mesoporous materials and non-silica-based mesoporous materials. The most well-known family of silica-based mesoporous materials is the Mesoporous Molecular Sieves family, which attracts attention because of its beneficial properties. The family includes three members that are differentiated based on their pore arrangement. In this review, the major applications of the Mobil Mesoporous Molecular Sieves family, such as catalysts, adsorbents, and drug delivery agents, have been surveyed. Furthermore, the synthesis of the Mesoporous Molecular Sieves materials, the silica sources, the importance of templates, and the mechanisms of the synthesis are discussed herein. Members of this material family are characterized by many physicochemical properties that are closely related to their high silica content, crystalline structure, and pore arrangement. Commonly, the members of this family have large surface areas, high pore volumes, small pore sizes, and narrow and uniform particle size distributions. These properties enable numerous industrial applications and opportunities for scientific studies to further develop existing materials or manufacture new ones.
This review discusses the gingival biotypes, their characteristics, analysis based on the measurement of the dentopapillary complex. Also discuss their response to inflammation, surgery, and ridge healing after tooth extraction, their influence in the behavior of the peri-implant tissue
Background: Tumor necrosis factor-alpha (TNF-α) and interleukins play important roles in the pathogenesis of rheumatoid arthritis (RA). Genetic research has been employed to find many of the missing connections between genetic risk variations and causal genetic components. Objective: The goal of this study is to look at the genetic variations of TNF-α and interleukins in Iraqi RA patients and see how they relate to disease severity or response to biological therapy. Method: Using specific keywords, the authors conducted a systematic and comprehensive search to identify relevant Iraqi studies examining the genetic variations of TNF-α and interleukins in Iraqi RA patients and how they relate to disease severity or response to biolo
... Show MoreThe purple pigment violacein is produced by Gram-negative bacteria, mainly from the Chromobacterium violaceum. Violacein is synthesized by fusing two Ltryptophan molecules using five different enzymes encoded by VioA, VioB, VioC, VioD, and VioE genes. These genes have transferred to genetically engineering microorganisms such as E.coli for high production of violacein. It is receiving greater interest because of its significant biological functions and therapeutic potential. The reviews outlining the biosynthesis, production, and biological significance of violacein are being published.
Blastocystosis is symptomatic infection caused by the protozoal parasite Blastocystis , which resides in the intestinal tract of its hosts and it is one of the most common parasites reported in humans. It’s prevalence ranges between (30 - 50%) of the population in developing countries. This genus has a worldwide distribution and often the most commonly reported human intestinal protozoan in children and adults, even infect infants
Thin film solar cells are preferable to the researchers and in applications due to the minimum material usage and to the rising of their efficiencies. In particular, thin film solar cells, which are designed based one transition metal chalcogenide materials, paly an essential role in solar energy conversion market. In this paper, transition metals with chalcogenide Nickel selenide termed as (NiSe2/Si) are synthesized. To this end, polycrystalline NiSe2 thin films are deposited through the use of vacuum evaporation technique under vacuum of 2.1x10-5 mbar, which are supplied to different annealing temperatures. The results show that under an annealed temperature of 525 K,
... Show More