History matching is a significant stage in reservoir modeling for evaluating past reservoir performance and predicting future behavior. This paper is primarily focused on the calibration of the dynamic reservoir model for the Meshrif formation, which is the main reservoir in the Garraf oilfield. A full-field reservoir model with 110 producing wells is constructed using a comprehensive dataset that includes geological, pressure-volume-temperature (PVT), and rock property information. The resulting 3D geologic model provides detailed information on water saturation, permeability, porosity, and net thickness to gross thickness for each grid cell, and forms the basis for constructing the dynamic reservoir model. The dynamic reservoir model integrates a variety of inputs, including well position and trajectory, well completion data, initial reservoir condition, and daily production/injection rates. The validation process involves comparing the original oil reserve derived from the geological model with the one obtained from the dynamic reservoir model. To achieve an accurate history matching, the calibration process has been performed by aligning observed data with simulation results. This involves focusing on production/injection data for each well and pressure measurements for selected wells. Notably, horizontal permeability is identified as a critical parameter in this study, which is adjusted iteratively to achieve a robust match for individual wells and the entire field. Thus, Successful calibration facilitates the subsequent stage and future scenarios allowing for the exploration of different conditions to predict the performance of the Garraf oilfield. This comprehensive approach improves the reliability of reservoir predictions, facilitating well-informed decision-making in reservoir management.
An innovative two-step noncatalytic esterifcation technique was proposed to synthesize alkyl esters from free fatty acids simulated in waste cooking oil, as a pretreatment process for biodiesel production, without adding any catalyst under normal conditions of pressure and temperature. The efect of methanol:oil molar ratio, reaction time, mixing rate, and reaction temperature were investigated. The results confrmed that the conversion of the reaction was increased when increasing the methanol molar ratio and decreased in prolonged reaction temperature. High conversion (94.545%) was successfully achieved at optimized conditions of 115:1, 65:1 methanol:oil molar ratio in the frst step and second step, respectively, other conditions i
... Show MoreOften requires the investor to know the result of the company's activity contribute to the investor or by wanting to invest in them because profit or loss of the company affect positively or negatively in the price of shares of the company and with the end of the fiscal year delayed companies often to issue its financial statements after it is approved and audited by an observer External Auditor, From here came the idea of research that appears to stakeholders of financial statements proactive appear, including actual figures for earlier stages have been prepared lists about lists and planned by the administration reflect the results of its phase remainder of the year as if they are (half a year or season or month) to offer At the
... Show MoreThis paper presents a computer simulation model of a thermally activated roof (TAR) to cool a room using cool water from a wet cooling tower. Modeling was achieved using a simplified 1-D resistance-capacitance thermal network (RC model) for an infinite slab. Heat transfer from the cooling pipe network was treated as 2-D heat flow. Only a limited number of nodes were required to obtain reliable results. The use of 6th order RC-thermal model produced a set of ordinary differential equations that were solved using MATLAB - R2012a. The computer program was written to cover all possible initial conditions, material properties, TAR system geometry and hourly solar radiation. The cool water supply was considered time
... Show MoreThis research dealt with desalting of East Baghdad crude oil using pellets of either anionic, PVC, quartz, PE, PP or
nonionic at different temperature ranging from 30 to 80 °C, pH from 6 to 8, time from 2 to 20 minutes, volume percent
washing water from 5 to 25% and fluid velocity from 0.5 to 0.8 m/s under voltage from 2 to 6 kV and / or using additives
such as alkyl benzene sulphonate or sodium stearate. The optimum conditions and materials were reported to remove
most of water from East Baghdad wet crude oil.
The electrospun nanofibers membranes have gained considerable interest in water filtration applications. In this work, the fabrication and characterization of the electrospun polyacrylonitrile-based nonwoven nanofibers membrane are reported. Then, the membrane's performance and antifouling properties were evaluated in removing emulsified oil using a cross flow filtration system. The membranes were fabricated with different polyacrylonitrile (PAN) concentrations (8, 11, and 14 wt. %) in N, N-Dimethylformamide (DMF) solvent resulted in various average fiber sizes, porosity, contact angle, permeability, oil rejection, and antifouling properties. Analyses of surface morphology of the fabricated membranes before and after oil removal revealed
... Show MoreThe Yamama Formation represents a part of the Late Berriasian-Aptian sequence, deposited during the Early Cretaceous period within the main shallow marine depositional environment. The studied area covers three oil fields; Sindbad oil field, Halfaya and Ad'daimah oil field, located in southeastern Iraq. Six major microfacies were recognized in the succession of the studied area represented by the Yamama Formation to determine and recognize depositional paleoenvironments. These microfacies are; Peloidal Packstone, Algal Wackestone to Packstone, Bioclastic Wackestone – Packstone, Foraminiferal Bioclastic Wackstone, Packstone, Peloidal – Oolitic Grainstone and Mudstone Microfacies. These microfacies are classified int
... Show MoreThere are several oil reservoirs that had severe from a sudden or gradual decline in their production due to asphaltene precipitation inside these reservoirs. Asphaltene deposition inside oil reservoirs causes damage for permeability and skin factor, wettability alteration of a reservoir, greater drawdown pressure. These adverse changing lead to flow rate reduction, so the economic profit will drop. The aim of this study is using local solvents: reformate, heavy-naphtha and binary of them for dissolving precipitated asphaltene inside the oil reservoir. Three samples of the sand pack had been prepared and mixed with a certain amount of asphaltene. Permeability of these samples calculated before and after mixed with asphaltenes. Then, the
... Show MoreIn this paper thermo-hydrodynamic characteristics were investigated experimentally for a new type shell-helical coiled tube heat exchanger used as a storage tank of closed loop solar water heater system. Triple concentric helical coils were made of copper tubes of (12.5mm OD and 10mm ID) with coils diameter of (207, 152.2, 97mm) for outer, middle and inner coils respectively. The experiments were carried out during a clear sky days of (March and April 2012). The parameters studied in this work are: history of average temperature of shell side of the storage tank, collector heat gain, heat rejected from coils to shell side of the storage tank, collector efficiency, thermal effectiveness of the heat exchanger (storage tank), and pressure d
... Show MoreDiesel engine oil was subjected to thermal oxidization (TO) for six periods of time (0 h, 24 h, 48 h, 72 h, 96 h, and 120 h) and was subsequently characterized by terahertz time domain spectroscopy (THz-TDS). The THz refractive index generally increased with oxidation time. The measurement method illustrated the potential of THz-TDS when a fixed setup with a single cuvette is used. A future miniaturized setup installed in an engine would be an example of a fixed setup. For the refractive index, there were highly significant differences among the oxidation times across most of the 0.3–1.7 THz range.