In this study, sulfur was removed from imitation oil using oxidative desulfurization process. Silicoaluminophosphate (SAPO-11) was prepared using the hydrothermal method with a concentration of carbon nanotubes (CNT) of 0% and 7.5% at 190 °C crystallization temperature. The final molar composition of the as-prepared SAPO-11 was Al2O3: 0.93P2O5: 0.414SiO2. 4% MO/SAPO-11 was prepared using impregnation methods. The produced SAPO-11 was described using X-ray diffraction (XRD) and Brunauer-Emmet-Teller (N2 adsorption–desorption isotherms). It was found that the addition of CNT increased the crystallinity of SAPO-11. The results showed that the surface area of SAPO-11 containing 7.5% CNT was 179.54 m2/g, and the pore volume was 0.317 cm3/g. However, the surface area of SAPO-11 containing 0% CNT was 125.311 m2/g, and pore volume was 0.275 cm3/g, while nanoparticles with an average particle diameter of 24.8 nm were obtained. Then, the prepared SAPO-11 was used in the oxidative desulfurization process. The oxidative desulfurization was studied using several factors affecting desulfurization efficiency, such as time (40, 60, 80, 100, and 120) min, amount of MO/SAPO-11 (0.3, 0.4, 0.5, 0.6, and 0.7) g/100 ml of simulated oil (100 ppm of dibenzothiophene), the amount of hydrogen peroxide (4ml) oxidizer/100 ml of simulated oil, and the temperature ranges from (40, 50, 60, 70, and 80 °C). The results showed that an increase in MO/SAPO-11 led to an increase in desulfurization. The best removal percentage for sulfur content was 92.79%, obtained at 70 °C and 0.6 g of MO/SAPO-11 containing 7.5% CNT, and the removal was 82.34% at 0% CNT and the same other conditions. While the equilibrium was achieved after 100 min. The results revealed that Freundlich's model described the adsorption of sulfur compounds better than Langmuir's, where the R2 of the Freundlich model was 0.9979 and the R2 of the Langmuir model was 0.9554.
Co(II) ion was determined by a new, accurate, sensitive and rapid method via a
continuous flow injection analysis (CFIA) with a chemiluminescence reaction based on
the oxidation of Luminol which is loaded on poly acrylic acid gel beads by hydrogen
peroxide in presence of Cobalt (II) ion as a chemiluminescence catalyst. Chemical and
physical parameters were investigated to obtain the best conditions. Linear dynamic
range of Cobalt (II) ion was from 0.1-20.0 μg.ml-1 with a correlation coefficient r =
0.9758, limit of detection (L.O.D) 0.2 ng/sample from the step wise dilution of lowest
concentration in the calibration graph with the percentage relative standard deviation for
3 μg.ml-1 Co(ll) solution is 0.8537% (n
Many pharmaceutical molecules have solubility problems that until yet consist a hurdle that restricts their use in the pharmaceutical preparations. Lacidipine (LCDP) is a calcium-channel blocker with low aqueous solubility and bioavailability.
Lipid dosage forms are attractive delivery systems for such hydrophobic drug molecules. Nanoemulsion (NE) is one of the popular methods that has been used to solve the solubility problems of many drugs. LCDP was formulated as a NE utilizing triacetin as an oil phase, tween 80 and tween 60 as a surfactant and ethanol as a co-surfactant. Nine formulas were prepared, and different tests performed to ensure the stability of the NEs, such as thermodyna
... Show MoreEconazole nitrate (EN) is considered as the most effective agent for the treatment of all forms of
dermatomycosis caused by dermatophytes. This study was carried out to formulate a stable
Econazole nitrate solution for a topical use through preparation of different formulas and selected
the most suitable one. The results indicated that the use of propylene glycol and ethanol as a vehicle
for EN which is very slightly soluble in water gave amore stable formula as EN topical solution,
with a shelf life of about 3.15 years .The data also indicated that the light accelerated the
degradation of EN, while the type of container (glass or plastic) had no effect on the rate of drug.
The overall results of this study suggest t
The reactions of ozone with 2,3-Dimethyl-2-Butene (CH3)2C=C(CH3)2 and 1,3-Butadiene CH2=CHCH=CH2 have been investigated under atmospheric conditions at 298±3K in air using both relative and absolute rate techniques, and the measured rate coefficients are found to be in good agreement in both techniques used. The obtained results show the addition of ozone to the double bond in these compounds and how it acts as function of the methyl group substituent situated on the double bond. The yields of all the main products have been determined using FTIR and GC-FID and the product studies of these reactions establish a very good idea for the decomposition pathways for the primary formed compounds (ozonides) and give a good information for the effe
... Show MoreMefenamic acid was esterified with starchwith[1:1] Molar ratio, as drug substituted with natural polymer, to prolongthe period of hydrolysis of drug polymer with other advantages. The new prodrug starch was characterized by FT-IR and UV-Visible and 1H-NMR spectroscopies. The physical properties were studied and controlled drug release was studied in different pH values at 37oC. The stability of drug was carried out by measuring the absorbance of mefenamic starch which hydrolyzed in HCl solution of pH 1.1 (artificial gastric fluid) and phosphate buffer of pH 7.4 (simulating intestinal fluid SIF) at 37oC for several days. The thermal analysis such as DSC was studied.
Inelastic longitudinal electron scattering C2 form factor in 48Ca has been utilized
to study the effects of fitting parameters on the sigma meson exchange type
potentials as a residual interaction. By coupling the core particles with model space
particle, where the latter used as an active part of residual interaction in the so called
core polarization process, it is included as a correction with first order perturbation
theory to the main calculation of model space, and the excitation energy has been
carried out with ( ). A model space wave vectors are generated in full fp shell
model with FPD6 as effective interaction with mixing configuration technique and
harmonic oscillator as a single particle wave function.
The marketing logistic chain, as an integrated system aimed to balance the achievement of its main opposite objectives which represented in the access to the best service presented to the customer with lowest possible logistic costs especially the transportation costs, where encourages the researcher to choose the second objective as a field of this study in order to reduce the transportation costs in the final link of marketing logistic chain which related to delivering of fuel oil to the customer that falls within organizational responsibilities of the company under consideration (Oil Marketing Company) and also known in a brief name by (SOMO) through two methods, the first is by functioning quantative techniques by using trans
... Show MoreIn this study an experimental work was done to study the possibility of using aluminum rubbish material as a coagulant to remove the colloidal particles from oily wastewater by dissolving this rubbish in sodium hydroxide solution. The experiments were carried out on simulated oily wastewater that was prepared at different oil concentrations and hardness levels (50, 250, 500, and 1000) ppm oil for (2000, 2500, 3000, and 3500) ppm CaCo3 respectively. The initial turbidity values were (203, 290, 770, and 1306) NTU, while the minimum values of turbidity that have been gained from the experiments in NTU units were (1.67, 1.95, 2.10, and 4.01) at best sodium aluminate dosages in milliliters (12, 20, 24, and 28) for
... Show MoreSimple and sensitive spectrophotometric method is described based on the coupling reaction of tetracycline hydrochloride (TC. HCl) with diazotized 4-aminopyridine in bulk and pharmaceutical forms. Colored azo dye formed during this reaction is measured at 433 nm as a function of time. Factors affecting the reaction yield were studied and the conditions were optimized. The kinetic study involves initial rate and fixed time (10 minutes) procedures for constructing the calibration graphs to determine the concentration of (TC. HCl). The graphs were linear for both methods in concentration range of 10.0 to 100.0 μg.mL-1. The recommended procedure was applied successfully in the determination of (TC. HCl) in its commercial formulations.
Some specific factors that cause the kinetic compensation effect
during the decomposition CaC03 are identified. The role of the C02 equilibrium pressure is examined in relation to the kinetic compensation effect. This investigation also shows why non - iso thermal experiments have some time necessarily to yield value of activation energy different from the value obtained from isothermal experiments.