Adsorption of lead ions from wastewater by native agricultural waste, precisely tea waste. After the activation and carbonization of tea waste, there was a substantial improvement in surface area and other physical characteristics which include density, bulk density, and porosity. FTIR analysis indicates that the functional groups in tea waste adsorbent are aromatic and carboxylic. It can be concluded that the tea waste could be a good sorbent for the removal of Lead ions from wastewater. Different dosages of the adsorbents were used in the batch studies. A random series of experiments indicated a removal degree efficiency of lead reaching (95 %) at 5 ppm optimum concentration, with adsorbents R2 =97.75% for tea. Three models (Langmuir, Freundlich, and Temkin) have been used to show which is the best operation. It was found that tea waste has an adsorption capacity (qmax) equal to 2.7972 (mg/g). Equilibrium data fitted well with the Freundlich isotherm because Freundlich assumptions are more suitable to represent the relationship between adsorbent and adsorbate. Two Kinetic Models were applied (first order, and second order) for this study. The adsorption kinetics was investigated and the best fit was achieved by a first-order equation with R2= 95.91%.
Background: Ankylosing spondylitis is a chronic inflammatory disease that mostly involves the spine and sacroiliac joints. It is associated with a decreased quality of life. Biological medicines such as infliximab and its biosimilar are the mainstay treatments for active ankylosing spondylitis.
Objective: The study objective was to conduct a pharmacoeconomic study comparing the cost-effectiveness of the reference infliximab with its biosimilar in ankylosing spondylitis patients visiting public hospitals.
Subjects and Method: This is a two-center pharmacoeconomic study performed at two large teaching governmental hospitals in Baghdad, Iraq, which s
... Show MoreSmart cities have recently undergone a fundamental evolution that has greatly increased their potentials. In reality, recent advances in the Internet of Things (IoT) have created new opportunities by solving a number of critical issues that are allowing innovations for smart cities as well as the creation and computerization of cutting-edge services and applications for the many city partners. In order to further the development of smart cities toward compelling sharing and connection, this study will explore the information innovation in smart cities in light of the Internet of Things (IoT) and cloud computing (CC). IoT data is first collected in the context of smart cities. The data that is gathered is uniform. The Internet of Things,
... Show MoreProblem: Cancer is regarded as one of the world's deadliest diseases. Machine learning and its new branch (deep learning) algorithms can facilitate the way of dealing with cancer, especially in the field of cancer prevention and detection. Traditional ways of analyzing cancer data have their limits, and cancer data is growing quickly. This makes it possible for deep learning to move forward with its powerful abilities to analyze and process cancer data. Aims: In the current study, a deep-learning medical support system for the prediction of lung cancer is presented. Methods: The study uses three different deep learning models (EfficientNetB3, ResNet50 and ResNet101) with the transfer learning concept. The three models are trained using a
... Show MoreThe continuous pressure of work and daily life and the increasing financial and social stress that Iraqi women are experiencing (both inside and outside Iraq) is one of the main causes of anxiety, particularly in those of working class women. This group of women carry the burden of carrying out multiple roles and responsibilities at the same time. All this collectively make them more prone to developing anxiety compared to men. In addition, the physiological and psychological nature of women, as females, on top of the other roles in life, like being a wife or mother or daughter or sister, all add extra pressure on women especially for those who are considered as productive working individuals in the society. In order to study the relatio
... Show MoreThe aim of this paper is to derive a posteriori error estimates for semilinear parabolic interface problems. More specifically, optimal order a posteriori error analysis in the - norm for semidiscrete semilinear parabolic interface problems is derived by using elliptic reconstruction technique introduced by Makridakis and Nochetto in (2003). A key idea for this technique is the use of error estimators derived for elliptic interface problems to obtain parabolic estimators that are of optimal order in space and time.
The parliamentary election is one of the features of democratic systems that give individuals the right to participate in government and political election-making. Typically, the process of parliamentary elections received wide attention from media, as well as attention from large segments of the public because they understand the vast importance to assume political positions and associated fates of people and their destinies. Its importance comes from the fact that it allows citizens the right to participate in managing the public affairs by granting their confidence and voices to the elected president or his representatives in the parliamentary.
Media task is to emerge democratic societies, in particular, in the mission of urging p
The research work is "The passive voice as a grammatical phenomenon in four selected textbooks". The research deals with the grammatical phenomenon passive in German. The research consists of two parts, the theoretical and the empirical part. The present research work is divided into 3 sections:
The first section includes the definition of passive, passive types, process passive, state passive, passive with modal verbs, and other types of passive. The second section provides illustrations of the four selected textbooks. The third chapter presents the passive voice in textbooks, namely German language teaching for foreigners by Dora Schulz and Heinz Griesbach, Delfin von Aufderstrasse H. and others, Em von Balme, M. and others and
... Show MoreBP algorithm is the most widely used supervised training algorithms for multi-layered feedforward neural net works. However, BP takes long time to converge and quite sensitive to the initial weights of a network. In this paper, a modified cuckoo search algorithm is used to get the optimal set of initial weights that will be used by BP algorithm. And changing the value of BP learning rate to improve the error convergence. The performance of the proposed hybrid algorithm is compared with the stan dard BP using simple data sets. The simulation result show that the proposed algorithm has improved the BP training in terms of quick convergence of the solution depending on the slope of the error graph.