Preferred Language
Articles
/
ijcpe-1018
Influence of Nanofluid Flooding on Oil Displacement in Porous Media
...Show More Authors

Hydrocarbon displacement at the pore scale is mainly controlled by the wetness properties of the porous media. Consequently, several techniques including nanofluid flooding were implemented to manipulate the wetting behavior of the pore space in oil reservoirs. This study thus focuses on monitoring the displacement of oil from artificial glass porous media, as a representative for sandstone reservoirs, before and after nanofluid flooding. Experiments were conducted at various temperatures (25 – 50° C), nanoparticles concentrations (0.001 – 0.05 wt% SiO2 NPs), salinity (0.1 – 2 wt% NaCl), and flooding time. Images were taken via a high-resolution microscopic camera and analyzed to investigate the displacement of the oil at different conditions. In addition, contact angle measurements on quartz surfaces were also conducted at similar conditions to understand the flow behavior in the porous media. Further, zeta potential and particle size distribution measurements were conducted to examine the stability of the injected nanofluids. Results revealed that the injection of nanofluids into oil-wet pore space can significantly enhance the recovery rate of hydrocarbon by altering the wettability of the porous media. However, salinity, particularly at high nanoparticles concentration (≥ 0.005) can dramatically reduce the efficiency of nanofluid. Further, increased aging time can improve the ability of nanofluid to alter the wettability of the surface, and thus more oil can be displaced. Thus, nanofluid can efficiently enhance oil recovery if correctly formulated.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Sep 01 2015
Journal Name
Journal Of Engineering
Mixed Convection Heat Transfer in a Vertical Saturated Concentric Annulus Packed with a Metallic Porous Media
...Show More Authors

Mixed convection heat transfer in a vertical concentric annulus packed with a metallic porous media and heated at a constant heat flux is experimentally investigated with water as the working fluid. A series of experiments have been carried out with a Rayleigh number range from Ra=122418.92 to 372579.31 and Reynolds number that based on the particles diameter of Red=14.62, 19.48 and 24.36. Under steady state condition, the measured data were collected and analyzed. Results show that the wall surface temperatures are affected by the imposed heat flux variation and Reynolds number variation. The variation of the local heat transfer coefficient and the mean Nusselt number are presented and analyzed. An empirical

... Show More
View Publication Preview PDF
Publication Date
Sat Jan 01 2022
Journal Name
Aip Conference Proceedings
The effect of different flooding ratio on Al-Shuwaija marsh
...Show More Authors

In this research, the effect of changing the flood level of Al-Shuwaija marsh was studied using the geographic information systems, specifically the QGIS program, and the STRM digital elevation model with a spatial analysis accuracy of 28 meters, was used to study the marsh. The hydraulic factors that characterize the marsh and affecting on the flooding such as the ranks of the water channels feeding the marsh and the degree of slope and flat areas in it are studied. The area of immersion water, the mean depth, and the accumulated water volume are calculated for each immersion level, thereby, this study finds the safe immersion level for this marsh was determined.

View Publication Preview PDF
Scopus Crossref
Publication Date
Sat Aug 01 2015
Journal Name
Journal Of Sol-gel Science And Technology
Synthesis and spectroscopic properties of silica nanoparticles as scatter centers in random gain porous media
...Show More Authors

Preview PDF
Scopus (3)
Scopus
Publication Date
Sun Mar 04 2018
Journal Name
Iraqi Journal Of Science
Influence of heat transfer on Magneto hydrodynamics oscillatory flow for Williamson fluid through a porous medium
...Show More Authors

In this paper, we have examined the influence of heat- transfer on the magnetohydrodynamics oscillatory flow of Williamson fluid during porous medium for two types of geometries "Poiseuille flow and Couette flow". We use perturbation technique in terms of the Weissenberg number to obtain explicit forms for velocity profiles. The results that obtained are illustrated by graphs.

View Publication Preview PDF
Publication Date
Sun May 26 2019
Journal Name
Iraqi Journal Of Science
The Influence of Anodization Time With The Electrochemical Cell Design on The Fabrication Process of Porous Silicon Nanostructures
...Show More Authors

     The influence of anodization time with the electrochemical cell design on the fabrication process of porous silicon (PS) nanostructures based on two electrochemical anodization cells (designed single tank cell and double tank cell) with two anodization times (10 and 30 minutes) was studied. Atomic force Microscopy (AFM) characterization had revealed three types of pores, mesopores, mesopore fill of mesopores, and macropore fill of mesopores were obtained from designed single tank cell with (10 and 30 minutes) of anodization time, whilst for double tank cell has not revealed precise information about the size and type of pores. Pores formation have been further approved by current-voltage (I-V) measurement and pho

... Show More
View Publication Preview PDF
Scopus (2)
Scopus Crossref
Publication Date
Sun Jul 30 2023
Journal Name
Iraqi Journal Of Science
Influence of Magnetic Force for Peristaltic Transport of Non-Newtonian Fluid Through Porous Medium in Asymmetric Channel
...Show More Authors

     In this paper, we study the effects of a magnetic force on the flow of hybrid bio - nano fluid (Cu - Au. NPs) for a peristaltic channel through a porous medium in an asymmetric channel. Nanoparticles of gold and copper as well as the blood (the base fluid) is taken into account. By using the Adomian decomposition method to solve the governing equations, formulas for velocity, stream function, temperature, current density, and magnetic force have been obtained. The findings show that Gold nanoparticles have an elevation magnetic force compared with copper nanoparticles, based on fluid (blood) and hybrid nanofluid. Finally, the phenomenon of trapping is offered as an explanation for the physical behavior of many parameters. The ef

... Show More
View Publication Preview PDF
Scopus (2)
Scopus Crossref
Publication Date
Sat Dec 01 2018
Journal Name
Al-khwarizmi Engineering Journal
Analysis the Surface Morphology of the Porous Media by using Atomic Force Microscope technique
...Show More Authors

An atomic force microscope (AFM) technique is utilized to investigate the polystyrene (PS) impact upon the morphological properties of the outer as well as inner surface of poly vinyl chloride (PVC) porous fibers. Noticeable a new shape of the nodules at the outer and inner surfaces, namely "Crater nodules", has been observed. The fibers surface images have seen to be regular nodular texture at the skin of the inner and outer surfaces at low PS content. At PS content of 6 wt.%, the nodules structure was varied from Crater shape to stripe. While with increasing of PS content, the pore density reduces as a result of increasing the size of the pore at the fiber surface. Moreover, the test of 3D-AFM images shows that the roughness of both su

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Tue Jan 04 2022
Journal Name
Iraqi Journal Of Science
Influence of MHD and Wall Properties on the Peristaltic Transport of a Williamson Fluid with Variable Viscosity Through Porous Medium
...Show More Authors

This paper concerns the peristaltic flow of a Williamson fluid with variable viscosity model through porous medium under combined effects of MHD and wall properties. The assumptions of Reynolds number and long wavelength is investigated. The flow is investigated in a wave frame of reference moving with velocity of the wave. The perturbation series in terms of the Weissenberg number (We <1) was used to obtain explicit forms for velocity field and stream function. The effects of thermal conductivity, Grashof number, Darcy number, magnet, rigidity, stiffness of the wall and viscous damping force parameters on velocity and stream function have been studied.

View Publication Preview PDF
Publication Date
Sun Apr 26 2020
Journal Name
Iraqi Journal Of Science
Impacts of Heat and Mass Transfer on Magneto Hydrodynamic Peristaltic Flow Having Temperature-dependent Properties in an Inclined Channel Through Porous Media
...Show More Authors

In this paper, we study the impacts of variable viscosity , heat and mass transfer on magneto hydrodynamic (MHD) peristaltic flow in a asymmetric tapered inclined channel with porous medium . The viscosity is considered as a function of temperature. The slip conditions at the walls were taken into consideration. Small
Reynolds number and the long wavelength approximations were used to simplify the governing equations. A comparison between the two velocities in cases of slip and no-slip was plotted. It was observed that the behavior of the velocity differed in the two applied models for some parameters. Mathematica software was used to estimate the exact solutions of temperature and concentration profiles. The resolution of the equatio

... Show More
View Publication Preview PDF
Scopus (13)
Crossref (1)
Scopus Crossref
Publication Date
Wed Feb 01 2023
Journal Name
Baghdad Science Journal
Influence of Nanosilica on Solvent Deasphalting for Upgrading Iraqi Heavy Crude Oil
...Show More Authors

In this study, the upgrading of Iraqi heavy crude oil was achieved utilizing the solvent deasphalting approach (SDA) and enhanced solvent deasphalting (e-SDA) by adding Nanosilica (NS). The NS was synthesized from local sand. The XRD result, referred to as the amorphous phase, has a wide peak at 2Θ= (22 - 23º) The inclusion of hydrogen-bonded silanol groups (Si–O–H) and siloxane groups (Si–O–Si) in the FTIR spectra. The SDA process was handled using n-pentane solvent at various solvent to oil ratios (SOR) (4-16/1ml/g), room and reflux temperature, and 0.5 h mixing time. In the e-SDA process, various fractions of the NS (1–7 wt.%) have been utilized with 61 nm particle size and 560.86 m²/g surface area in the presence of 12 m

... Show More
View Publication Preview PDF
Scopus (4)
Crossref (5)
Scopus Clarivate Crossref