In southern Iraq, the Yamama Formation has been a primary carbonate resource since the Lower Cretaceous era. This study covers Siba Field, which is located in southeastern Iraq. This paper will be devoted to a YC unit of study. The most crucial step in reservoir management is petrophysical characterization. The primary goal of this research is to assess the reservoir features and lithology of the Yamama (YC) Formation in the Siba region. Accessible excellent logs include sonic, density, neutron, gamma-ray, SP, and resistivity readings. The Interactive Petrophysics (IP4.4) program examined and estimated petrophysical features such as clay volume, porosity, and water saturation. The optimum approach was the neutron density and clay volume calculation using the Gamma Ray Method (VclGR), it was 0.246 in SB-6 since they are not impacted by anything. The Archie method was chosen due to its suitability for limestone. The lithology and mineralogy of the formations were determined using M-N cross plots; the diagram revealed that the Formation was composed of limestone. The Archie parameter was determined using the Pickett plot and formation water resistivity from the Pickett plot and SP log where the results were similar in all wells (RW=0.016, m=2.08, n=2.3, a=1.1). In addition, the higher section of the formation has good reservoir qualities such as density is (2.368g/cc), porosity is (PHIE=0.117) in SB-6.
In this work, we have investigated optical properties of the thermally evaporation PbS/CdS thin films. The optical constant such as (refractive index n, dielectric constant εi,r and Extinction coefficient κ) of the deposition films were obtained from the analysis of the experimental recorded transmittance spectral data. The optical band gap of PbS/CdS films is calculate from (αhυ)1/2 vs. photon energy curve.
This study involves the synthesis of a new class of silicon polymers, designated as P1-P7, derived from dichlorodimethylsilane (DCDMS) in combination with various organic compounds (Schiff bases prepared from different amines and appropriate aldehydes or ketones) [I-V] through condensation polymerization. The structures of all monomers and polymers were characterization by FTIR and 1HNMR spectroscopy (for some polymers). The results of thermogravimetric analysis (TGA) and differential scanning calorimetry DSC test show stable thermal behaviour. Polymers with a higher concentration of aromatic rings in their repeating structural units exhibited a higher temperature for weight loss, indicating increased thermal stability. Thermal meas
... Show MoreUnsaturated soil can raise many geotechnical problems upon wetting and drying resulting in swelling upon wetting and collapsing (shrinkage) in drying and changing in the soil shear strength. The classical principles of saturated soil are often not suitable in explaining these phenomena. In this study, expansive soil (bentonite and sand) were tested in different water contents and dry unit weight chosen from the compaction curve to examine the effect of water content change on soil properties (swelling pressure, expansion index, shear strength (soil cohesion) and soil suction by the filter paper method). The physical properties of these soils were studied by conducting series of tests in laboratory. Fitting methods
... Show MoreThis research is focusing on finding more effective polymers that leads to enhance the rheological properties of Water Base Muds. The experiments are done for different types of mud for all substances which are Polyacrylamide, Xanthan gum, CMC (Carboxyl Methyl Cellulose). This study shows the effect of add polymer to red bentonite mud, effect of add polymer to Iraqi bentonite mud, the effect of add bentonite to polymer mud. The mud properties of Iraqi bentonite blank are enhanced after adding the polymers to the blank mix, CMC gives the highest value of plastic viscosity and Gel strength than others; X-anthan gives the highest value of yield point and gel strength than others. For the red bentonite mud, Polyacrylamide has the highes
... Show MoreThe objective of this research was to investigate the effect of replacing fat(shortening) with different percentages of tahena on the quality properties (physiochemical and sensory ) of shortened cake.The percentages of moisture,protein ,fat and ash of cake increased significantly(p<0.05) as the replacement was increased .The highest increase percentages were 10,48,5,and 90 %,respectivly, at 100% replacement .Carbohydrate,however,decreased by 10%at 100% replacement .these findings may indicate improvement of cake nutritional value.Standing height,as an indicator of cake volume, also increased significantly by 4% at the 50% replacement then it decreased by 4% 100% replacement level. Basic formula (control) has signific
... Show MoreInSb alloy was prepared then InSb:Bi films have been prepared successfully by thermal evaporation technique on glass substrate at Ts=423K. The variation of activation energies(Ea1,Ea2)of d.c conductivity with annealing temperature (303, 373, 423, 473, 523 and 573)K were measured, it is found that its values increases with increasing annealing temperature. To show the type of the films, the Hall and thermoelectric power were measured. The activation energy of the thermoelectric power is much smaller than for d.c conductivity and increases with increasing annealing temperature .The mobility and carrier concentration has been measured also.
Introduction: This study was performed to compare the effect of Fractional CO2 laser or Q switched Nd:YAG laser of surface treatment on the shear bond strength of zirconia-porcelain interface. Methods: Fractional CO2 laser at 30 W, 2 ms, time interval 1 ms, distance between spots 0.3 mm, and number of scans is (4) or Q switched Nd:YAG laser at 30 J/mm2 and 10 Hz were used to assess the shear bond strength of zirconia to porcelain. Pre-sintered zirconia specimens were divided into three groups (n = 10) according to the surface treatment technique used: (a) untreated (Control) group; (b) CO2 group; (c) Nd:YAG group. All samples were then sintered and veneered with porcelain according to the manufacturer’s instructions. Surface morph
... Show MoreDuring 9–10 September 2011 the ACE, Wind, and SOHO spacecraft measured the complex interaction between an interplanetary coronal mass ejection (ICME) and a corotating interaction region (CIR) associated with the heliospheric sector boundary. Except for a few short periods, the suprathermal electrons are unidirectional, suggesting that the ICME magnetic field has opened through interchange reconnection. Signatures of interaction are distributed throughout the event suggesting that the structures have become entangled or embedded. Since the ICME speed is relatively low, the strong forward shock must be caused by the ICME‐CIR interaction. Other interesting features are the upstream heating flux disc