In cooling water systems, cooling towers play a critical role in removing heat from the water. Cooling water systems are commonly used in industry to dispose the waste heat. An upward spray cooling water systems was especially designed and investigated in this work. The effect of two nanofluids (Al2O3/ water, black carbon /water) on velocity and temperature distributions along reverse spray cooling tower at various concentrations (0.02, 0.08, 0.1, 0.15, and 0.2 wt.%) were investigated, beside the effect of the inlet water temperature (35 ,40, and 45 ͦ C) and water to air flow ratio (L/G) of 0.5, 0.75, and 1. The best thermal performance was found when the working solution contained 0.1 wt.% for each of Al2O3 and black carbon nanoparticles, with a maximum drop in temperature drops (i, e. range) of (16 ͦ C) and (20 ͦ C), respectively. The temperature of the tower's outlet water was decreased as the inlet working fluid increased, and the thermal efficiency declined with the increasing of the L/G by about 5%. However, the drop in the outlet temperature caused by the nanofluid is more than that of pure water at every point by about 6 ͦ C.
The aim of this paper, study the effect of carbon nanotubes on the electrical properties of polyvinylchloride. Samples of polyvinylchloride carbon nanotubes composite prepared by using hot press technique. The weight percentages of carbon nanotubes are 0,5,10 and 20wt.%. Results showed that the D.C electrical conductivity increases with increasing of the weight percentages of carbon nanotubes. Also, the D.C electrical conductivity changed with increase temperature for different concentrations of carbon nanotubes. The activation energy of D.C electrical conductivity is decreased with increasing of carbon nanotubes concentration.
Crystalline silicon (c-Si) has low optical absorption due to its high surface reflection of incident light. Nanotexturing of c-Si which produces black silicon (b-Si) offers a promising solution. In this work, effect of H2O2 concentrations towards surface morphological and optical properties of b-Si fabricated by two-step silver-assisted wet chemical etching (Ag-based two-step MACE) for potential photovoltaic (PV) applications is presented. The method involves a 30 s deposition of silver nanoparticles (Ag NPs) in an aqueous solution of AgNO3:HF (5:6) and an optimized etching in HF:H2O2:DI H2O solution under 0.62 M, 1.85 M, 2.47 M, and 3.7 M concentrations of H2O<
... Show MoreThis study was conducted in Al-Salam station for Dairy cattle/private sector, for the period from 1-11-2016 to 1-11-2017, to determine the association between BTN1A1 gene polymorphism and reproductive efficiency indicator and heat tolerance in 50 Holstein cows. The results of BTN1A1 gene analysis showed a highly significant Different (P<0.01) between genotypes of BTN1A1 gene’s genotypes AA, AB the percentage were 72.00, 28.00 % respectively. Results showed that services per conception and days open was significantly (P<0.05) affected by polymorphism of BTN1A1 gene and for cows with AA genotype, there was also a significant difference (P<0.05) between the genotypes of BTN1A1 gene for IgG concentration in calves blood who belong to mother
... Show MorePreviously, many empirical models have been used to predict corrosion rates under different CO2 corrosion parameters conditions. Most of these models did not predict the corrosion rate exactly, besides it determined effects of variables by holding some variables constant and changing the values of other variables to obtain the regression model. As a result the experiments will be large and cost too much. In this paper response surface methodology (RSM) was proposed to optimize the experiments and reduce the experimental running. The experiments studied effects of temperature (40 – 60 °C), pH (3-5), acetic acid (HAc) concentration (1000-3000 ppm) and rotation speed (1000-1500 rpm) on CO2 corrosion performance of t
... Show MoreThis search study the effect of particle size of graphite on the mechanical and thermal properties of epoxy composites, where graphite adopted with particle sizes (45,53,75) ?m, respectively, and the percentages by weight (0,1,3,5,7,9)% for each size of this three particle sizes.Mechanical properties represented by the bending (three-point bending) and through which the conclusion is bending stress and modulus of elasticity, thermal properties were either through thermal conductivity tests.The results showed that the ratio(1%) is the maximum value of bending stress at the three particle size and the (45 ?m) is the maximum.Thermal conductivity result show is the maximum value at ratio (1%) of particle size(53 ?m)
There are no single materials which can withstand all the extreme operating conditions in modern technology. Protection of the metals from hostile environments has therefore become a technical and economic necessity.
In this work, for enhancing their wear-resistance, boride layers were deposited on the surface of low carbon steel by a pack cementation method at 850 °C for (2, 4, and 6) h using vacuum furnace. The boronizing process was achieved using different concentration of boron source (20, 25, and 30) % wt. into coating mixture to optimize the best conditions which ensure the higher properties with lower time. The coating was characteristic by X ray diffraction (XRD), and it is confirmed t
... Show MorePolyimide/MWCNTs nanocomposites have been fabricated by solution mixing process. In the present study, we have investigated electrical conductivity and dielectric properties of PI/MWCNT nanocomposites in frequency range of 1 kHz to 100 kHz at different MWCNTs concentrations from 0 wt.% to 15 wt.%. It has been observed that the electrical conductivity and dielectric constants are enhanced significantly by several orders of magnitude up to 15 wt.% of MWCNTs content. The electrical conductivity increases as the frequency is increased, which can be attributed to high dislocation density near the interface. The rapid increase in the dielectric constant at a high MWCNTs content can be explained by the form
The thermal method was used to produce silicoaluminophosphate (SAPO-11) with different amounts of carbon nanotubes (CNT). XRD, nitrogen adsorption-desorption, SEM, AFM, and FTIR were used to characterize the prepared catalyst. It was discovered that adding CNT increased the crystallinity of the synthesize SAPO-11 at all the temperatures which studied, wile the maximum surface area was 179.54 m2/g obtained at 190°C with 7.5 percent of CNT with a pore volume of 0.317 cm3/g ,and with nano-particles with average particle diameter of 24.8 nm, while the final molar composition of the prepared SAPO-11 was (Al2O3:0.93P2O5:0.414SiO2).
This paper demonstrates the construction designing analysis and control strategies for fully tracking concentrated solar thermal by using programmable logic control in the city of Erbil-Iraq. This work used the parabolic dish as a concentrated solar thermal. At the focal point, the collected form of energy is used for heating a (water) in the receiver, analyzing this prototype in real-time with two different shapes of the receiver and comparing the results. For tracking the parabolic dish, four light-dependent resistors are used to detect the sun's position in the sky so that the tracking system follows it to make the beam radiation perpendicular to the collector surface all of the time during the day for maximum solar p
... Show More